| name | 12-factor-apps |
| description | Perform 12-Factor App compliance analysis on any codebase. Use when evaluating application architecture, auditing SaaS applications, or reviewing cloud-native applications against the original 12-Factor methodology. |
12-Factor App Compliance Analysis
Reference: The Twelve-Factor App
Overview
The 12-Factor App methodology is a set of best practices for building Software-as-a-Service applications that are:
- Portable across execution environments
- Scalable without architectural changes
- Suitable for continuous deployment
- Maintainable with minimal friction
Input Parameters
| Parameter | Description | Required |
|---|---|---|
codebase_path |
Root path of the codebase to analyze | Required |
Analysis Framework
Factor I: Codebase
Principle: One codebase tracked in revision control, many deploys.
Search Patterns:
# Check for version control
ls -la .git 2>/dev/null || ls -la .hg 2>/dev/null
# Check for multiple apps sharing codebase
find . -name "package.json" -o -name "pyproject.toml" -o -name "setup.py" | head -20
# Check for environment-specific code branches
grep -r "if.*production\|if.*development\|if.*staging" --include="*.py" --include="*.js" --include="*.ts"
File Patterns: .git/, package.json, pyproject.toml, deployment configs
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Single Git repo, same codebase for all environments, no env-specific code branches |
| Partial | Single repo but some environment-specific code paths |
| Weak | Multiple repos for same app or significant code duplication across environments |
Anti-patterns:
- Multiple Git repositories for the same application
- Environment-specific code branches (
if production: ...) - Different source files for dev vs prod
- Shared code not extracted to libraries
Factor II: Dependencies
Principle: Explicitly declare and isolate dependencies.
Search Patterns:
# Python dependency files
find . -name "requirements.txt" -o -name "pyproject.toml" -o -name "setup.py" -o -name "Pipfile" -o -name "uv.lock"
# JavaScript/TypeScript dependency files
find . -name "package.json" -o -name "package-lock.json" -o -name "yarn.lock" -o -name "pnpm-lock.yaml"
# Check for system tool assumptions
grep -r "subprocess.*curl\|subprocess.*wget\|os.system.*ffmpeg\|shutil.which" --include="*.py"
grep -r "exec.*curl\|child_process.*curl" --include="*.js" --include="*.ts"
# Docker/container isolation
find . -name "Dockerfile" -o -name "docker-compose*.yml"
File Patterns: **/requirements*.txt, **/package.json, **/*.lock, **/Dockerfile
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Lock files present, dependency isolation (venv/Docker), no implicit system tools |
| Partial | Dependencies declared but no lock files or isolation |
| Weak | Dependencies in documentation only, relies on system-installed packages |
Anti-patterns:
- Missing lock files (non-deterministic builds)
- Assuming system tools (curl, ImageMagick, ffmpeg) are available
- Different dependency managers in dev vs production
- No virtual environment or container isolation
Factor III: Config
Principle: Store config in the environment.
Search Patterns:
# Environment variable usage
grep -r "os.environ\|os.getenv\|process.env\|ENV\[" --include="*.py" --include="*.js" --include="*.ts" --include="*.rb"
# Hardcoded credentials (anti-pattern)
grep -r "password.*=.*['\"]" --include="*.py" --include="*.js" --include="*.ts" | grep -v "test\|spec\|example"
grep -r "api_key.*=.*['\"]" --include="*.py" --include="*.js" --include="*.ts" | grep -v "test\|spec\|example"
grep -r "secret.*=.*['\"]" --include="*.py" --include="*.js" --include="*.ts" | grep -v "test\|spec\|example"
# Environment-specific config files (anti-pattern)
find . -name "config.dev.*" -o -name "config.prod.*" -o -name "settings.development.*" -o -name "settings.production.*"
# Database URLs in code
grep -r "postgresql://\|mysql://\|mongodb://\|redis://" --include="*.py" --include="*.js" --include="*.ts" | grep -v ".env\|test\|example"
File Patterns: **/.env*, **/config/*.py, **/settings.py, environment files
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | All config via environment variables, no hardcoded secrets, could open-source without leaks |
| Partial | Most config externalized but some hardcoded defaults |
| Weak | Hardcoded credentials, environment-specific config files |
Anti-patterns:
- Hardcoded database URLs, API keys, passwords in source
- Config files like
config/production.ymlvsconfig/development.yml - Environment grouping (
if ENV == 'production': ...) - Secrets committed to version control
Factor IV: Backing Services
Principle: Treat backing services as attached resources.
Search Patterns:
# Database connection via config
grep -r "DATABASE_URL\|DB_HOST\|REDIS_URL\|CACHE_URL" --include="*.py" --include="*.js" --include="*.ts"
# Service initialization
grep -r "create_engine\|MongoClient\|Redis\|Celery\|boto3" --include="*.py"
grep -r "createPool\|createClient\|new Redis\|S3Client" --include="*.js" --include="*.ts"
# Hardcoded service locations (anti-pattern)
grep -r "localhost:5432\|localhost:6379\|localhost:27017\|127.0.0.1" --include="*.py" --include="*.js" --include="*.ts" | grep -v "test\|spec\|example\|default"
File Patterns: **/database/*.py, **/services/*.py, **/db.py, connection configurations
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | All services via URL/connection string in config, swappable without code changes |
| Partial | Most services configurable but some hardcoded defaults |
| Weak | Hardcoded service locations, different code paths per environment |
Anti-patterns:
- Hardcoded
localhostfor services in production code - Conditional logic for local vs cloud services (
if USE_S3: ... else: local_storage) - Service-specific code paths based on environment
- Different drivers for dev vs prod
Factor V: Build, Release, Run
Principle: Strictly separate build and run stages.
Search Patterns:
# Build/deploy configuration
find . -name "Dockerfile" -o -name "Makefile" -o -name "build.sh" -o -name "deploy.sh"
find . -name ".github/workflows/*.yml" -o -name ".gitlab-ci.yml" -o -name "Jenkinsfile"
# Build scripts in package.json
grep -A5 '"scripts"' package.json 2>/dev/null | grep -E "build|start|deploy"
# Check for runtime compilation (anti-pattern)
grep -r "compile\|transpile\|webpack" --include="*.py" | grep -v "test\|build"
File Patterns: **/Dockerfile, **/Makefile, **/.github/workflows/**, CI/CD configs
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Immutable releases, clear build/release/run stages, unique release IDs |
| Partial | Build and run separated but release not immutable |
| Weak | Runtime code modifications, asset compilation at startup |
Anti-patterns:
- Runtime code modifications
- Asset compilation during application startup
- Configuration baked into build artifacts
- No release versioning
Factor VI: Processes
Principle: Execute the app as one or more stateless processes.
Search Patterns:
# Session storage patterns
grep -r "session\|Session" --include="*.py" --include="*.js" --include="*.ts" | head -20
# In-process state (anti-pattern)
grep -r "global.*cache\|process_local\|instance_cache" --include="*.py"
grep -r "global\..*=\|module\.exports\.cache" --include="*.js" --include="*.ts"
# External session stores (good pattern)
grep -r "redis.*session\|memcached.*session\|session.*redis" --include="*.py" --include="*.js" --include="*.ts"
# Sticky session configuration (anti-pattern)
grep -r "sticky.*session\|session.*affinity" --include="*.yml" --include="*.yaml" --include="*.json"
File Patterns: **/middleware/*.py, **/session/*.py, server configurations
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Stateless processes, all state in external datastores (Redis, DB) |
| Partial | Mostly stateless but some in-process caching |
| Weak | Sticky sessions, in-process session storage, shared memory state |
Anti-patterns:
- In-process session storage (
user_sessions = {}) - Sticky sessions or session affinity
- File-based caching between requests
- Global mutable state shared across requests
Factor VII: Port Binding
Principle: Export services via port binding.
Search Patterns:
# Self-contained port binding
grep -r "app.run\|server.listen\|serve\|uvicorn" --include="*.py"
grep -r "app.listen\|server.listen\|createServer" --include="*.js" --include="*.ts"
# PORT environment variable
grep -r "PORT\|port" --include="*.py" --include="*.js" --include="*.ts" | grep -i "environ\|process.env"
# Webserver as dependency
grep -r "uvicorn\|gunicorn\|flask\|fastapi\|express\|koa\|hapi" package.json pyproject.toml requirements.txt 2>/dev/null
File Patterns: **/main.py, **/server.py, **/app.py, **/index.js
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Self-contained app binds to PORT, webserver is a dependency |
| Partial | Port binding but not configurable via environment |
| Weak | Relies on external webserver container (Apache, Nginx) to provide HTTP |
Anti-patterns:
- Relying on Apache/Nginx/Tomcat to inject webserver functionality
- Hardcoded port numbers
- No PORT environment variable support
- CGI scripts or server modules
Factor VIII: Concurrency
Principle: Scale out via the process model.
Search Patterns:
# Process definitions
find . -name "Procfile" -o -name "process.yml" -o -name ".foreman"
# Multiple entry points
find . -name "worker.py" -o -name "scheduler.py" -o -name "web.py"
# Background job systems
grep -r "celery\|rq\|sidekiq\|bull\|agenda" --include="*.py" --include="*.js" --include="*.ts"
grep -r "Celery\|Worker\|BackgroundJob" --include="*.py" --include="*.js" --include="*.ts"
File Patterns: **/Procfile, **/worker.py, **/scheduler.py, queue configurations
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Explicit process types (web, worker, scheduler), horizontal scaling |
| Partial | Multiple process types but not easily scalable |
| Weak | Single monolithic process, no separation of concerns |
Anti-patterns:
- Single process handling all workloads
- Hard-coded worker counts in code
- No separation between web and background processes
- Vertical scaling only (bigger server, not more processes)
Factor IX: Disposability
Principle: Maximize robustness with fast startup and graceful shutdown.
Search Patterns:
# Signal handlers
grep -r "signal.signal\|SIGTERM\|SIGINT\|atexit" --include="*.py"
grep -r "process.on.*SIGTERM\|process.on.*SIGINT" --include="*.js" --include="*.ts"
# Graceful shutdown
grep -r "graceful.*shutdown\|shutdown_handler\|cleanup" --include="*.py" --include="*.js" --include="*.ts"
# Startup time
grep -r "startup\|initialize\|bootstrap" --include="*.py" --include="*.js" --include="*.ts" | head -20
File Patterns: **/main.py, **/server.py, lifecycle management code
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Fast startup (<10s), SIGTERM handling, graceful shutdown, jobs returnable to queue |
| Partial | Graceful shutdown but slow startup |
| Weak | No signal handling, jobs lost on process death, slow startup |
Anti-patterns:
- No SIGTERM/SIGINT handlers
- Slow startup (>30 seconds)
- Jobs lost if process crashes
- No cleanup on shutdown
Factor X: Dev/Prod Parity
Principle: Keep development, staging, and production as similar as possible.
Search Patterns:
# Different services per environment (anti-pattern)
grep -r "if.*development.*sqlite\|if.*production.*postgres" --include="*.py" --include="*.js" --include="*.ts"
grep -r "development.*SQLite\|production.*PostgreSQL" --include="*.py" --include="*.js" --include="*.ts"
# Docker for parity
find . -name "docker-compose*.yml" -o -name "Dockerfile"
# Environment-specific backends
grep -r "USE_LOCAL_\|LOCAL_STORAGE\|MOCK_" --include="*.py" --include="*.js" --include="*.ts"
File Patterns: **/docker-compose*.yml, environment configurations
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Same services everywhere (PostgreSQL in dev and prod), containerized |
| Partial | Mostly same but some lightweight dev alternatives |
| Weak | SQLite in dev, PostgreSQL in prod; different backing services |
Anti-patterns:
- SQLite for development, PostgreSQL for production
- In-memory cache in dev, Redis in prod
- Different service versions across environments
- "It works on my machine" issues
Factor XI: Logs
Principle: Treat logs as event streams.
Search Patterns:
# Stdout logging
grep -r "print(\|logging.info\|logger.info\|console.log" --include="*.py" --include="*.js" --include="*.ts" | head -20
# File-based logging (anti-pattern)
grep -r "FileHandler\|open.*\.log\|writeFile.*log\|fs.appendFile.*log" --include="*.py" --include="*.js" --include="*.ts"
grep -r "/var/log\|/tmp/.*\.log\|logs/" --include="*.py" --include="*.js" --include="*.ts" | grep -v "test\|example"
# Structured logging
grep -r "structlog\|json_logger\|pino\|winston" --include="*.py" --include="*.js" --include="*.ts"
File Patterns: **/logging.py, **/logger.py, logging configurations
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Unbuffered stdout only, structured logging (JSON), no file management |
| Partial | Stdout logging but with some file handlers |
| Weak | Application writes to log files, manages rotation |
Anti-patterns:
- Writing logs to files (
FileHandler,open('/var/log/app.log')) - Log rotation logic in application code
- Log archival managed by application
- Buffered logging
Factor XII: Admin Processes
Principle: Run admin/management tasks as one-off processes.
Search Patterns:
# Management commands
find . -name "manage.py" -o -name "Rakefile" -o -name "artisan"
grep -r "@cli.command\|@click.command\|typer.command" --include="*.py"
# Migration scripts
find . -name "migrations" -type d
find . -name "*migration*.py" -o -name "*migrate*.py"
# Admin scripts with proper isolation
grep -r "bundle exec\|source.*venv\|uv run" --include="*.sh" --include="Makefile"
File Patterns: **/manage.py, **/cli.py, **/migrations/**, admin scripts
Compliance Criteria:
| Level | Criteria |
|---|---|
| Strong | Admin tasks use same dependencies/config, proper isolation, idempotent |
| Partial | Admin tasks exist but different setup from app |
| Weak | Manual database manipulation, scripts without isolation |
Anti-patterns:
- Admin scripts not using app's dependency manager
- Direct SQL manipulation outside of migrations
- Admin scripts with hardcoded credentials
- Non-idempotent migrations
Output Format
Executive Summary Table
| Factor | Status | Notes |
|--------|--------|-------|
| I. Codebase | **Strong/Partial/Weak** | [Key finding] |
| II. Dependencies | **Strong/Partial/Weak** | [Key finding] |
| III. Config | **Strong/Partial/Weak** | [Key finding] |
| IV. Backing Services | **Strong/Partial/Weak** | [Key finding] |
| V. Build/Release/Run | **Strong/Partial/Weak** | [Key finding] |
| VI. Processes | **Strong/Partial/Weak** | [Key finding] |
| VII. Port Binding | **Strong/Partial/Weak** | [Key finding] |
| VIII. Concurrency | **Strong/Partial/Weak** | [Key finding] |
| IX. Disposability | **Strong/Partial/Weak** | [Key finding] |
| X. Dev/Prod Parity | **Strong/Partial/Weak** | [Key finding] |
| XI. Logs | **Strong/Partial/Weak** | [Key finding] |
| XII. Admin Processes | **Strong/Partial/Weak** | [Key finding] |
**Overall**: X Strong, Y Partial, Z Weak
Per-Factor Analysis
For each factor, provide:
Current Implementation
- Evidence with file:line references
- Code snippets showing patterns
Compliance Level
- Strong/Partial/Weak with justification
Gaps
- What's missing vs. 12-Factor ideal
Recommendations
- Actionable improvements with code examples
Analysis Workflow
Initial Scan
- Run search patterns for all factors
- Identify key files for each factor
- Note any existing compliance documentation
Deep Dive (per factor)
- Read identified files
- Evaluate against compliance criteria
- Document evidence with file paths
Gap Analysis
- Compare current vs. 12-Factor ideal
- Identify anti-patterns present
- Prioritize by impact
Recommendations
- Provide actionable improvements
- Include before/after code examples
- Reference best practices
Summary
- Compile executive summary table
- Highlight strengths and critical gaps
- Suggest priority order for improvements
Quick Reference: Compliance Scoring
| Score | Meaning | Action |
|---|---|---|
| Strong | Fully implements principle | Maintain, minor optimizations |
| Partial | Some implementation, significant gaps | Planned improvements |
| Weak | Minimal or no implementation | High priority for roadmap |
When to Use This Skill
- Evaluating new SaaS applications
- Reviewing cloud-native architecture decisions
- Auditing production applications for scalability
- Planning migration to cloud platforms
- Comparing application architectures
- Preparing for containerization/Kubernetes deployment