| name | pydantic-ai-agent-creation |
| description | Create PydanticAI agents with type-safe dependencies, structured outputs, and proper configuration. Use when building AI agents, creating chat systems, or integrating LLMs with Pydantic validation. |
Creating PydanticAI Agents
Quick Start
from pydantic_ai import Agent
# Minimal agent (text output)
agent = Agent('openai:gpt-4o')
result = agent.run_sync('Hello!')
print(result.output) # str
Model Selection
Model strings follow provider:model-name format:
# OpenAI
agent = Agent('openai:gpt-4o')
agent = Agent('openai:gpt-4o-mini')
# Anthropic
agent = Agent('anthropic:claude-sonnet-4-5')
agent = Agent('anthropic:claude-haiku-4-5')
# Google
agent = Agent('google-gla:gemini-2.0-flash')
agent = Agent('google-vertex:gemini-2.0-flash')
# Others: groq:, mistral:, cohere:, bedrock:, etc.
Structured Outputs
Use Pydantic models for validated, typed responses:
from pydantic import BaseModel
from pydantic_ai import Agent
class CityInfo(BaseModel):
city: str
country: str
population: int
agent = Agent('openai:gpt-4o', output_type=CityInfo)
result = agent.run_sync('Tell me about Paris')
print(result.output.city) # "Paris"
print(result.output.population) # int, validated
Agent Configuration
agent = Agent(
'openai:gpt-4o',
output_type=MyOutput, # Structured output type
deps_type=MyDeps, # Dependency injection type
instructions='You are helpful.', # Static instructions
retries=2, # Retry attempts for validation
name='my-agent', # For logging/tracing
model_settings=ModelSettings( # Provider settings
temperature=0.7,
max_tokens=1000
),
end_strategy='early', # How to handle tool calls with results
)
Running Agents
Three execution methods:
# Async (preferred)
result = await agent.run('prompt', deps=my_deps)
# Sync (convenience)
result = agent.run_sync('prompt', deps=my_deps)
# Streaming
async with agent.run_stream('prompt') as response:
async for chunk in response.stream_output():
print(chunk, end='')
Instructions vs System Prompts
# Instructions: Concatenated, for agent behavior
agent = Agent(
'openai:gpt-4o',
instructions='You are a helpful assistant. Be concise.'
)
# Dynamic instructions via decorator
@agent.instructions
def add_context(ctx: RunContext[MyDeps]) -> str:
return f"User ID: {ctx.deps.user_id}"
# System prompts: Static, for model context
agent = Agent(
'openai:gpt-4o',
system_prompt=['You are an expert.', 'Always cite sources.']
)
Common Patterns
Parameterized Agent (Type-Safe)
from dataclasses import dataclass
from pydantic_ai import Agent, RunContext
@dataclass
class Deps:
api_key: str
user_id: int
agent: Agent[Deps, str] = Agent(
'openai:gpt-4o',
deps_type=Deps,
)
# deps is now required and type-checked
result = agent.run_sync('Hello', deps=Deps(api_key='...', user_id=123))
No Dependencies (Satisfy Type Checker)
# Option 1: Explicit type annotation
agent: Agent[None, str] = Agent('openai:gpt-4o')
# Option 2: Pass deps=None
result = agent.run_sync('Hello', deps=None)
Decision Framework
| Scenario | Configuration |
|---|---|
| Simple text responses | Agent(model) |
| Structured data extraction | Agent(model, output_type=MyModel) |
| Need external services | Add deps_type=MyDeps |
| Validation retries needed | Increase retries=3 |
| Debugging/monitoring | Set instrument=True |