Claude Code Plugins

Community-maintained marketplace

Feedback

pydantic-ai-common-pitfalls

@existential-birds/beagle
4
0

Avoid common mistakes and debug issues in PydanticAI agents. Use when encountering errors, unexpected behavior, or when reviewing agent implementations.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pydantic-ai-common-pitfalls
description Avoid common mistakes and debug issues in PydanticAI agents. Use when encountering errors, unexpected behavior, or when reviewing agent implementations.

PydanticAI Common Pitfalls and Debugging

Tool Decorator Errors

Wrong: RunContext in tool_plain

# ERROR: RunContext not allowed in tool_plain
@agent.tool_plain
async def bad_tool(ctx: RunContext[MyDeps]) -> str:
    return "oops"
# UserError: RunContext annotations can only be used with tools that take context

Fix: Use @agent.tool if you need context:

@agent.tool
async def good_tool(ctx: RunContext[MyDeps]) -> str:
    return "works"

Wrong: Missing RunContext in tool

# ERROR: First param must be RunContext
@agent.tool
def bad_tool(user_id: int) -> str:
    return "oops"
# UserError: First parameter of tools that take context must be annotated with RunContext[...]

Fix: Add RunContext as first parameter:

@agent.tool
def good_tool(ctx: RunContext[MyDeps], user_id: int) -> str:
    return "works"

Wrong: RunContext not first

# ERROR: RunContext must be first parameter
@agent.tool
def bad_tool(user_id: int, ctx: RunContext[MyDeps]) -> str:
    return "oops"

Fix: RunContext must always be the first parameter.

Valid Patterns (Not Errors)

Raw Function Tool Registration

The following pattern IS valid and supported by pydantic-ai:

from pydantic_ai import Agent, RunContext

async def search_db(ctx: RunContext[MyDeps], query: str) -> list[dict]:
    """Search the database."""
    return await ctx.deps.db.search(query)

async def get_user(ctx: RunContext[MyDeps], user_id: int) -> dict:
    """Get user by ID."""
    return await ctx.deps.db.get_user(user_id)

# Valid: Pass raw functions to Agent(tools=[...])
agent = Agent(
    'openai:gpt-4o',
    deps_type=MyDeps,
    tools=[search_db, get_user]  # RunContext detected from signature
)

Why this works: PydanticAI inspects function signatures. If the first parameter is RunContext[T], it's treated as a context-aware tool. No decorator required.

Reference: https://ai.pydantic.dev/agents/#registering-tools-via-the-tools-argument

Do NOT flag code that passes functions with RunContext signatures to Agent(tools=[...]). This is equivalent to using @agent.tool and is explicitly documented.

Dependency Type Mismatches

Wrong: Missing deps at runtime

agent = Agent('openai:gpt-4o', deps_type=MyDeps)

# ERROR: deps required but not provided
result = agent.run_sync('Hello')  # Missing deps!

Fix: Always provide deps when deps_type is set:

result = agent.run_sync('Hello', deps=MyDeps(...))

Wrong: Wrong deps type

@dataclass
class AppDeps:
    db: Database

@dataclass
class WrongDeps:
    api: ApiClient

agent = Agent('openai:gpt-4o', deps_type=AppDeps)

# Type error: WrongDeps != AppDeps
result = agent.run_sync('Hello', deps=WrongDeps(...))

Output Type Issues

Pydantic validation fails

class Response(BaseModel):
    count: int
    items: list[str]

agent = Agent('openai:gpt-4o', output_type=Response)
result = agent.run_sync('List items')
# May fail if LLM returns wrong structure

Fix: Increase retries or improve prompt:

agent = Agent(
    'openai:gpt-4o',
    output_type=Response,
    retries=3,  # More attempts
    instructions='Return JSON with count (int) and items (list of strings).'
)

Complex nested types

# May cause schema issues with some models
class Complex(BaseModel):
    nested: dict[str, list[tuple[int, str]]]

Fix: Simplify or use intermediate models:

class Item(BaseModel):
    id: int
    name: str

class Simple(BaseModel):
    items: list[Item]

Async vs Sync Mistakes

Wrong: Calling async in sync context

# ERROR: Can't await in sync function
def handler():
    result = await agent.run('Hello')  # SyntaxError!

Fix: Use run_sync or make handler async:

def handler():
    result = agent.run_sync('Hello')

# Or
async def handler():
    result = await agent.run('Hello')

Wrong: Blocking in async tools

@agent.tool
async def slow_tool(ctx: RunContext[Deps]) -> str:
    time.sleep(5)  # WRONG: Blocks event loop!
    return "done"

Fix: Use async I/O:

@agent.tool
async def slow_tool(ctx: RunContext[Deps]) -> str:
    await asyncio.sleep(5)  # Correct
    return "done"

Model Configuration Errors

Missing API key

# ERROR: OPENAI_API_KEY not set
agent = Agent('openai:gpt-4o')
result = agent.run_sync('Hello')
# ModelAPIError: Authentication failed

Fix: Set environment variable or use defer_model_check:

# For testing
agent = Agent('openai:gpt-4o', defer_model_check=True)
with agent.override(model=TestModel()):
    result = agent.run_sync('Hello')

Invalid model string

# ERROR: Unknown provider
agent = Agent('unknown:model')
# ValueError: Unknown model provider

Fix: Use valid provider:model format.

Streaming Issues

Wrong: Using result before stream completes

async with agent.run_stream('Hello') as response:
    # DON'T access .output before streaming completes
    print(response.output)  # May be incomplete!

# Correct: access after context manager
print(response.output)  # Complete result

Wrong: Not iterating stream

async with agent.run_stream('Hello') as response:
    pass  # Never consumed!

# Stream was never read - output may be incomplete

Fix: Always consume the stream:

async with agent.run_stream('Hello') as response:
    async for chunk in response.stream_output():
        print(chunk, end='')

Tool Return Issues

Wrong: Returning non-serializable

@agent.tool_plain
def bad_return() -> object:
    return CustomObject()  # Can't serialize!

Fix: Return serializable types (str, dict, Pydantic model):

@agent.tool_plain
def good_return() -> dict:
    return {"key": "value"}

Debugging Tips

Enable tracing

import logfire
logfire.configure()
logfire.instrument_pydantic_ai()

# Or per-agent
agent = Agent('openai:gpt-4o', instrument=True)

Capture messages

from pydantic_ai import capture_run_messages

with capture_run_messages() as messages:
    result = agent.run_sync('Hello')

for msg in messages:
    print(type(msg).__name__, msg)

Check model responses

result = agent.run_sync('Hello')
print(result.all_messages())  # Full message history
print(result.response)  # Last model response
print(result.usage())  # Token usage

Common Error Messages

Error Cause Fix
First parameter... RunContext @agent.tool missing ctx Add ctx: RunContext[...]
RunContext... only... context @agent.tool_plain has ctx Remove ctx or use @agent.tool
Unknown model provider Invalid model string Use valid provider:model
ModelAPIError API auth/quota Check API key, limits
RetryPromptPart in messages Validation failed Check output_type, increase retries