| name | pydantic-ai-tool-system |
| description | Register and implement PydanticAI tools with proper context handling, type annotations, and docstrings. Use when adding tool capabilities to agents, implementing function calling, or creating agent actions. |
PydanticAI Tool System
Tool Registration
Two decorators based on whether you need context:
from pydantic_ai import Agent, RunContext
agent = Agent('openai:gpt-4o')
# @agent.tool - First param MUST be RunContext
@agent.tool
async def get_user_data(ctx: RunContext[MyDeps], user_id: int) -> str:
"""Get user data from database.
Args:
ctx: The run context with dependencies.
user_id: The user's ID.
"""
return await ctx.deps.db.get_user(user_id)
# @agent.tool_plain - NO context parameter allowed
@agent.tool_plain
def calculate_total(prices: list[float]) -> float:
"""Calculate total price.
Args:
prices: List of prices to sum.
"""
return sum(prices)
Critical Rules
- @agent.tool: First parameter MUST be
RunContext[DepsType] - @agent.tool_plain: MUST NOT have
RunContextparameter - Docstrings: Required for LLM to understand tool purpose
- Google-style docstrings: Used for parameter descriptions
Docstring Formats
Google style (default):
@agent.tool_plain
async def search(query: str, limit: int = 10) -> list[str]:
"""Search for items.
Args:
query: The search query.
limit: Maximum results to return.
"""
Sphinx style:
@agent.tool_plain(docstring_format='sphinx')
async def search(query: str) -> list[str]:
"""Search for items.
:param query: The search query.
"""
Tool Return Types
Tools can return various types:
# String (direct)
@agent.tool_plain
def get_info() -> str:
return "Some information"
# Pydantic model (serialized to JSON)
@agent.tool_plain
def get_user() -> User:
return User(name="John", age=30)
# Dict (serialized to JSON)
@agent.tool_plain
def get_data() -> dict[str, Any]:
return {"key": "value"}
# ToolReturn for custom content types
from pydantic_ai import ToolReturn, ImageUrl
@agent.tool_plain
def get_image() -> ToolReturn:
return ToolReturn(content=[ImageUrl(url="https://...")])
Accessing Context
RunContext provides:
@agent.tool
async def my_tool(ctx: RunContext[MyDeps]) -> str:
# Dependencies
db = ctx.deps.db
api = ctx.deps.api_client
# Model info
model_name = ctx.model.model_name
# Usage tracking
tokens_used = ctx.usage.total_tokens
# Retry info
attempt = ctx.retry # Current retry attempt (0-based)
max_retries = ctx.max_retries
# Message history
messages = ctx.messages
return "result"
Tool Prepare Functions
Dynamically modify tools per-request:
from pydantic_ai.tools import ToolDefinition
async def prepare_tools(
ctx: RunContext[MyDeps],
tool_defs: list[ToolDefinition]
) -> list[ToolDefinition]:
"""Filter or modify tools based on context."""
if ctx.deps.user_role != 'admin':
# Hide admin tools from non-admins
return [t for t in tool_defs if not t.name.startswith('admin_')]
return tool_defs
agent = Agent('openai:gpt-4o', prepare_tools=prepare_tools)
Toolsets
Group and compose tools:
from pydantic_ai import FunctionToolset, CombinedToolset
# Create a toolset
db_tools = FunctionToolset()
@db_tools.tool
def query_users(name: str) -> list[dict]:
"""Query users by name."""
...
@db_tools.tool
def update_user(id: int, data: dict) -> bool:
"""Update user data."""
...
# Use in agent
agent = Agent('openai:gpt-4o', toolsets=[db_tools])
# Combine toolsets
all_tools = CombinedToolset([db_tools, api_tools])
Common Mistakes
Wrong: Context in tool_plain
@agent.tool_plain
async def bad_tool(ctx: RunContext[MyDeps]) -> str: # ERROR!
...
Wrong: Missing context in tool
@agent.tool
def bad_tool(user_id: int) -> str: # ERROR!
...
Wrong: Context not first parameter
@agent.tool
def bad_tool(user_id: int, ctx: RunContext[MyDeps]) -> str: # ERROR!
...
Async vs Sync
Both work, but async is preferred for I/O:
# Async (preferred for I/O operations)
@agent.tool
async def fetch_data(ctx: RunContext[Deps]) -> str:
return await ctx.deps.client.get('/data')
# Sync (fine for CPU-bound operations)
@agent.tool_plain
def compute(x: int, y: int) -> int:
return x * y