Claude Code Plugins

Community-maintained marketplace

Feedback

pydantic-ai-tool-system

@existential-birds/beagle
1
0

Register and implement PydanticAI tools with proper context handling, type annotations, and docstrings. Use when adding tool capabilities to agents, implementing function calling, or creating agent actions.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pydantic-ai-tool-system
description Register and implement PydanticAI tools with proper context handling, type annotations, and docstrings. Use when adding tool capabilities to agents, implementing function calling, or creating agent actions.

PydanticAI Tool System

Tool Registration

Two decorators based on whether you need context:

from pydantic_ai import Agent, RunContext

agent = Agent('openai:gpt-4o')

# @agent.tool - First param MUST be RunContext
@agent.tool
async def get_user_data(ctx: RunContext[MyDeps], user_id: int) -> str:
    """Get user data from database.

    Args:
        ctx: The run context with dependencies.
        user_id: The user's ID.
    """
    return await ctx.deps.db.get_user(user_id)

# @agent.tool_plain - NO context parameter allowed
@agent.tool_plain
def calculate_total(prices: list[float]) -> float:
    """Calculate total price.

    Args:
        prices: List of prices to sum.
    """
    return sum(prices)

Critical Rules

  1. @agent.tool: First parameter MUST be RunContext[DepsType]
  2. @agent.tool_plain: MUST NOT have RunContext parameter
  3. Docstrings: Required for LLM to understand tool purpose
  4. Google-style docstrings: Used for parameter descriptions

Docstring Formats

Google style (default):

@agent.tool_plain
async def search(query: str, limit: int = 10) -> list[str]:
    """Search for items.

    Args:
        query: The search query.
        limit: Maximum results to return.
    """

Sphinx style:

@agent.tool_plain(docstring_format='sphinx')
async def search(query: str) -> list[str]:
    """Search for items.

    :param query: The search query.
    """

Tool Return Types

Tools can return various types:

# String (direct)
@agent.tool_plain
def get_info() -> str:
    return "Some information"

# Pydantic model (serialized to JSON)
@agent.tool_plain
def get_user() -> User:
    return User(name="John", age=30)

# Dict (serialized to JSON)
@agent.tool_plain
def get_data() -> dict[str, Any]:
    return {"key": "value"}

# ToolReturn for custom content types
from pydantic_ai import ToolReturn, ImageUrl

@agent.tool_plain
def get_image() -> ToolReturn:
    return ToolReturn(content=[ImageUrl(url="https://...")])

Accessing Context

RunContext provides:

@agent.tool
async def my_tool(ctx: RunContext[MyDeps]) -> str:
    # Dependencies
    db = ctx.deps.db
    api = ctx.deps.api_client

    # Model info
    model_name = ctx.model.model_name

    # Usage tracking
    tokens_used = ctx.usage.total_tokens

    # Retry info
    attempt = ctx.retry  # Current retry attempt (0-based)
    max_retries = ctx.max_retries

    # Message history
    messages = ctx.messages

    return "result"

Tool Prepare Functions

Dynamically modify tools per-request:

from pydantic_ai.tools import ToolDefinition

async def prepare_tools(
    ctx: RunContext[MyDeps],
    tool_defs: list[ToolDefinition]
) -> list[ToolDefinition]:
    """Filter or modify tools based on context."""
    if ctx.deps.user_role != 'admin':
        # Hide admin tools from non-admins
        return [t for t in tool_defs if not t.name.startswith('admin_')]
    return tool_defs

agent = Agent('openai:gpt-4o', prepare_tools=prepare_tools)

Toolsets

Group and compose tools:

from pydantic_ai import FunctionToolset, CombinedToolset

# Create a toolset
db_tools = FunctionToolset()

@db_tools.tool
def query_users(name: str) -> list[dict]:
    """Query users by name."""
    ...

@db_tools.tool
def update_user(id: int, data: dict) -> bool:
    """Update user data."""
    ...

# Use in agent
agent = Agent('openai:gpt-4o', toolsets=[db_tools])

# Combine toolsets
all_tools = CombinedToolset([db_tools, api_tools])

Common Mistakes

Wrong: Context in tool_plain

@agent.tool_plain
async def bad_tool(ctx: RunContext[MyDeps]) -> str:  # ERROR!
    ...

Wrong: Missing context in tool

@agent.tool
def bad_tool(user_id: int) -> str:  # ERROR!
    ...

Wrong: Context not first parameter

@agent.tool
def bad_tool(user_id: int, ctx: RunContext[MyDeps]) -> str:  # ERROR!
    ...

Async vs Sync

Both work, but async is preferred for I/O:

# Async (preferred for I/O operations)
@agent.tool
async def fetch_data(ctx: RunContext[Deps]) -> str:
    return await ctx.deps.client.get('/data')

# Sync (fine for CPU-bound operations)
@agent.tool_plain
def compute(x: int, y: int) -> int:
    return x * y