Claude Code Plugins

Community-maintained marketplace

Feedback

Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch jobs, scheduling tasks, serving APIs with GPU acceleration, or scaling compute-intensive workloads. Triggers on requests for serverless GPU infrastructure, LLM inference, model training/fine-tuning, parallel data processing, cron jobs in the cloud, or deploying Python web endpoints.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name modal-deployment
description Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch jobs, scheduling tasks, serving APIs with GPU acceleration, or scaling compute-intensive workloads. Triggers on requests for serverless GPU infrastructure, LLM inference, model training/fine-tuning, parallel data processing, cron jobs in the cloud, or deploying Python web endpoints.

Modal

Modal is a serverless platform for running Python in the cloud with zero configuration. Define everything in code—no YAML, Docker, or Kubernetes required.

Quick Start

import modal

app = modal.App("my-app")

@app.function()
def hello():
    return "Hello from Modal!"

@app.local_entrypoint()
def main():
    print(hello.remote())

Run: modal run app.py

Core Concepts

Functions

Decorate Python functions to run remotely:

@app.function(gpu="H100", memory=32768, timeout=600)
def train_model(data):
    # Runs on H100 GPU with 32GB RAM, 10min timeout
    return model.fit(data)

Images

Define container environments via method chaining:

image = (
    modal.Image.debian_slim(python_version="3.12")
    .apt_install("ffmpeg", "libsndfile1")
    .uv_pip_install("torch", "transformers", "numpy")
    .env({"CUDA_VISIBLE_DEVICES": "0"})
)

app = modal.App("ml-app", image=image)

Key image methods:

  • .debian_slim() / .micromamba() - Base images
  • .uv_pip_install() / .pip_install() - Python packages
  • .apt_install() - System packages
  • .run_commands() - Shell commands
  • .add_local_python_source() - Local modules
  • .env() - Environment variables

GPUs

Attach GPUs with a single parameter:

@app.function(gpu="H100")      # Single H100
@app.function(gpu="A100-80GB") # 80GB A100
@app.function(gpu="H100:4")    # 4x H100
@app.function(gpu=["H100", "A100-40GB:2"])  # Fallback options

Available: B200, H200, H100, A100-80GB, A100-40GB, L40S, L4, A10G, T4

Classes with Lifecycle Hooks

Load models once at container startup:

@app.cls(gpu="L40S")
class Model:
    @modal.enter()
    def load(self):
        self.model = load_pretrained("model-name")
    
    @modal.method()
    def predict(self, x):
        return self.model(x)

# Usage
Model().predict.remote(data)

Web Endpoints

Deploy APIs instantly:

@app.function()
@modal.fastapi_endpoint()
def api(text: str):
    return {"result": process(text)}

# For complex apps
@app.function()
@modal.asgi_app()
def fastapi_app():
    from fastapi import FastAPI
    web = FastAPI()
    
    @web.get("/health")
    def health():
        return {"status": "ok"}
    
    return web

Volumes (Persistent Storage)

volume = modal.Volume.from_name("my-data", create_if_missing=True)

@app.function(volumes={"/data": volume})
def save_file(content: str):
    with open("/data/output.txt", "w") as f:
        f.write(content)
    volume.commit()  # Persist changes

Secrets

@app.function(secrets=[modal.Secret.from_name("my-api-key")])
def call_api():
    import os
    key = os.environ["API_KEY"]

Create secrets: Dashboard or modal secret create my-secret KEY=value

Dicts (Distributed Key-Value Store)

cache = modal.Dict.from_name("my-cache", create_if_missing=True)

@app.function()
def cached_compute(key: str):
    if key in cache:
        return cache[key]
    result = expensive_computation(key)
    cache[key] = result
    return result

Queues (Distributed FIFO)

queue = modal.Queue.from_name("task-queue", create_if_missing=True)

@app.function()
def producer():
    queue.put_many([{"task": i} for i in range(10)])

@app.function()
def consumer():
    while task := queue.get(timeout=60):
        process(task)

Parallel Processing

# Map over inputs (auto-parallelized)
results = list(process.map(items))

# Spawn async jobs
calls = [process.spawn(item) for item in items]
results = [call.get() for call in calls]

# Batch processing (up to 1M inputs)
process.spawn_map(range(100_000))

Scheduling

@app.function(schedule=modal.Period(hours=1))
def hourly_job():
    pass

@app.function(schedule=modal.Cron("0 9 * * 1-5"))  # 9am weekdays
def daily_report():
    pass

CLI Commands

modal run app.py          # Run locally-triggered function
modal serve app.py        # Hot-reload web endpoints
modal deploy app.py       # Deploy persistently
modal shell app.py        # Interactive shell in container
modal app list            # List deployed apps
modal app logs <name>     # Stream logs
modal volume list         # List volumes
modal secret list         # List secrets

Common Patterns

LLM Inference

@app.cls(gpu="H100", image=image)
class LLM:
    @modal.enter()
    def load(self):
        from vllm import LLM
        self.llm = LLM("meta-llama/Llama-3-8B")
    
    @modal.method()
    def generate(self, prompt: str):
        return self.llm.generate(prompt)

Download Models at Build Time

def download_model():
    from huggingface_hub import snapshot_download
    snapshot_download("model-id", local_dir="/models")

image = (
    modal.Image.debian_slim()
    .pip_install("huggingface-hub")
    .run_function(download_model)
)

Concurrency for I/O-bound Work

@app.function()
@modal.concurrent(max_inputs=100)
async def fetch_urls(url: str):
    async with aiohttp.ClientSession() as session:
        return await session.get(url)

Memory Snapshots (Faster Cold Starts)

@app.cls(enable_memory_snapshot=True, gpu="A10G")
class FastModel:
    @modal.enter(snap=True)
    def load(self):
        self.model = load_model()  # Snapshot this state

Autoscaling

@app.function(
    min_containers=2,       # Always keep 2 warm
    max_containers=100,     # Scale up to 100
    buffer_containers=5,    # Extra buffer for bursts
    scaledown_window=300,   # Keep idle for 5 min
)
def serve():
    pass

Best Practices

  1. Put imports inside functions when packages aren't installed locally
  2. Use @modal.enter() for expensive initialization (model loading)
  3. Pin dependency versions for reproducible builds
  4. Use Volumes for model weights and persistent data
  5. Use memory snapshots for sub-second cold starts in production
  6. Set appropriate timeouts for long-running tasks

Reference Documentation

See references/ for detailed guides on images, functions, GPUs, scaling, web endpoints, storage, dicts, queues, sandboxes, and networking.

Official docs: https://modal.com/docs