| name | document-ocr-processing |
| description | Process scanned documents and images containing Chuukese text using OCR with specialized post-processing for accent characters and traditional formatting. Use when working with scanned books, documents, or images that contain Chuukese text that needs to be digitized. |
Document OCR Processing
Overview
Specialized OCR processing for documents containing Chuukese text, with enhanced accuracy for accented characters, traditional formatting patterns, and multilingual content. Designed to handle the unique challenges of digitizing historical and contemporary Chuukese documents.
Capabilities
- Chuukese-Aware OCR: Enhanced recognition of accented characters (á, é, í, ó, ú, ā, ē, ī, ō, ū)
- Traditional Format Recognition: Handle traditional document layouts and formatting
- Multilingual Processing: Process documents with both Chuukese and English text
- Quality Enhancement: Post-processing to improve OCR accuracy
- Batch Processing: Efficiently process multiple documents
- Format Preservation: Maintain original document structure and layout
Core Components
1. OCR Engine Setup
import pytesseract
from PIL import Image
import cv2
import numpy as np
class ChuukeseOCRProcessor:
def __init__(self):
# Configure Tesseract for multi-language support
self.tesseract_config = {
'chuukese_optimized': '--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzáéíóúāēīōū0123456789.,!?;:()-"\' ',
'multilingual': '--oem 3 --psm 6',
'preserve_structure': '--oem 3 --psm 1'
}
# Chuukese character mappings for OCR corrections
self.ocr_corrections = {
# Common OCR mistakes for accented characters
'a´': 'á', 'a`': 'à', 'a¯': 'ā',
'e´': 'é', 'e`': 'è', 'e¯': 'ē',
'i´': 'í', 'i`': 'ì', 'i¯': 'ī',
'o´': 'ó', 'o`': 'ò', 'o¯': 'ō',
'u´': 'ú', 'u`': 'ù', 'u¯': 'ū',
# Common character confusions
'0': 'o', '1': 'l', '5': 's',
'rn': 'm', 'cl': 'd', 'ck': 'ch'
}
def preprocess_image(self, image_path):
"""Preprocess image for better OCR accuracy"""
# Load image
image = cv2.imread(image_path)
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Noise removal
denoised = cv2.medianBlur(gray, 3)
# Contrast enhancement
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced = clahe.apply(denoised)
# Binarization
_, binary = cv2.threshold(enhanced, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return binary
2. Post-Processing for Chuukese Text
class ChuukeseOCRPostProcessor:
def __init__(self, dictionary_path=None):
self.dictionary = {}
if dictionary_path:
self.load_chuukese_dictionary(dictionary_path)
# Common OCR error patterns for Chuukese
self.error_patterns = {
# Accent corrections
r'a[\'\`\´]': 'á',
r'e[\'\`\´]': 'é',
r'i[\'\`\´]': 'í',
r'o[\'\`\´]': 'ó',
r'u[\'\`\´]': 'ú',
# Common character substitutions
r'\b0(?=[aeiou])': 'o', # 0 at start of word -> o
r'(?<=[aeiou])0\b': 'o', # 0 at end after vowel -> o
r'\brn(?=[aeiou])': 'm', # rn -> m
}
def correct_ocr_errors(self, text):
"""Apply OCR error corrections specific to Chuukese"""
corrected = text
# Apply pattern-based corrections
for pattern, replacement in self.error_patterns.items():
corrected = re.sub(pattern, replacement, corrected)
return corrected
Usage Examples
Process Single Document
# Initialize processor
processor = BatchOCRProcessor("output/ocr_results")
# Process single document
result = processor.process_document("scanned_chuukese_dictionary.jpg")
# Access extracted text
extracted_text = result['extracted_text']
dictionary_entries = result['document_structure']['dictionary_entries']
Batch Process Directory
# Process all images in a directory
batch_results = processor.process_batch(
"scanned_documents/",
file_patterns=['*.jpg', '*.png']
)
print(f"Processed {batch_results['successfully_processed']} documents")
Best Practices
Image Preprocessing
- Quality assessment: Check image quality before processing
- Resolution optimization: Ensure minimum 300 DPI for OCR
- Noise reduction: Apply appropriate filtering for cleaner text
- Orientation correction: Detect and correct page rotation
OCR Accuracy
- Language-specific tuning: Optimize for Chuukese character set
- Confidence thresholds: Filter low-confidence results
- Multiple engine comparison: Use different OCR engines for comparison
- Human validation: Sample-based quality checking
Dependencies
pytesseract: OCR engine interfaceopencv-python: Image preprocessingPillow: Image handling and manipulationnumpy: Numerical operations for image processing