| name | translation-quality-assessment |
| description | Assess and validate translation quality between Chuukese and English with cultural context awareness, linguistic accuracy checking, and automated quality metrics. Use when evaluating translation outputs, building quality control systems, or validating translation models. |
Translation Quality Assessment
Overview
A specialized skill for assessing translation quality between Chuukese and English, incorporating cultural context validation, linguistic accuracy checking, and automated quality metrics. Designed to ensure high-quality translations that preserve both linguistic meaning and cultural nuances.
Capabilities
- Cultural Context Validation: Ensure translations maintain cultural appropriateness and traditional concepts
- Linguistic Accuracy Assessment: Check grammatical correctness and meaning preservation
- Automated Quality Metrics: BLEU, ROUGE, and custom Chuukese-specific scoring
- Consistency Checking: Verify terminology consistency across translations
- Fluency Evaluation: Assess naturalness and readability of translations
- Back-Translation Validation: Round-trip translation quality assessment
Core Components
1. Cultural Context Validator
class ChuukeseCulturalValidator:
def __init__(self):
self.cultural_mappings = {
# Family relationships with cultural significance
'family_terms': {
'semei': {'english': 'older brother', 'cultural_note': 'implies respect and responsibility'},
'jinej': {'english': 'older sister', 'cultural_note': 'implies respect and responsibility'},
'pwis': {'english': 'grandchild', 'cultural_note': 'special bond in Chuukese culture'}
},
# Traditional concepts that require cultural explanation
'traditional_concepts': {
'emon': {'english': 'traditional house', 'cultural_note': 'communal living structure'},
'chomw': {'english': 'to help/cooperate', 'cultural_note': 'fundamental community value'},
'nous': {'english': 'traditional gift exchange', 'cultural_note': 'important social practice'}
},
# Respect and formality indicators
'respect_markers': {
'oupwe': {'english': 'please (formal)', 'cultural_note': 'high respect level'},
'kose mochen': {'english': 'thank you (formal)', 'cultural_note': 'deep gratitude expression'},
'tipeew': {'english': 'excuse me (formal)', 'cultural_note': 'polite interruption'}
}
}
def validate_cultural_preservation(self, chuukese_text, english_translation):
"""Validate that cultural concepts are properly translated"""
validation_results = {
'cultural_terms_found': [],
'proper_translations': [],
'missing_context': [],
'cultural_accuracy_score': 0.0
}
total_cultural_terms = 0
correctly_translated = 0
for category, terms in self.cultural_mappings.items():
for chuukese_term, translation_info in terms.items():
if chuukese_term in chuukese_text.lower():
total_cultural_terms += 1
validation_results['cultural_terms_found'].append({
'term': chuukese_term,
'category': category,
'expected_translation': translation_info['english'],
'cultural_note': translation_info['cultural_note']
})
# Check if English translation contains expected terms
if translation_info['english'] in english_translation.lower():
correctly_translated += 1
validation_results['proper_translations'].append(chuukese_term)
else:
validation_results['missing_context'].append({
'term': chuukese_term,
'expected': translation_info['english'],
'suggestion': f"Consider translating as '{translation_info['english']}' with note: {translation_info['cultural_note']}"
})
if total_cultural_terms > 0:
validation_results['cultural_accuracy_score'] = correctly_translated / total_cultural_terms
return validation_results
2. Linguistic Accuracy Checker
class ChuukeseLinguisticChecker:
def __init__(self):
# Common Chuukese grammatical patterns
self.grammar_patterns = {
'verb_patterns': {
'present': r'(ko|ka|ke)\s+\w+', # Present tense markers
'past': r'(a|aa)\s+\w+', # Past tense markers
'future': r'(pwe|pwene)\s+\w+' # Future tense markers
},
'noun_patterns': {
'plural': r'\w+(kan|kin)$', # Plural endings
'possessive': r'\w+(y|i|ey)$' # Possessive forms
},
'sentence_structure': {
'basic_word_order': 'VSO', # Verb-Subject-Object typical order
'question_markers': ['ya', 'ese', 'iwe', 'mei']
}
}
def check_grammatical_accuracy(self, chuukese_text, english_translation):
"""Check if translation preserves grammatical structures"""
accuracy_report = {
'tense_consistency': True,
'structure_preservation': True,
'grammatical_errors': [],
'suggestions': []
}
# Check tense consistency
chuukese_tenses = self.detect_tenses(chuukese_text)
english_tenses = self.detect_english_tenses(english_translation)
if not self.tenses_match(chuukese_tenses, english_tenses):
accuracy_report['tense_consistency'] = False
accuracy_report['grammatical_errors'].append('Tense mismatch between source and translation')
# Check question structure preservation
if any(marker in chuukese_text.lower() for marker in self.grammar_patterns['sentence_structure']['question_markers']):
if not english_translation.strip().endswith('?'):
accuracy_report['structure_preservation'] = False
accuracy_report['grammatical_errors'].append('Question structure not preserved in translation')
return accuracy_report
def detect_tenses(self, text):
"""Detect tenses in Chuukese text"""
detected_tenses = []
for tense, pattern in self.grammar_patterns['verb_patterns'].items():
if re.search(pattern, text, re.IGNORECASE):
detected_tenses.append(tense)
return detected_tenses
3. Automated Quality Metrics
import math
from collections import Counter
class TranslationQualityMetrics:
def __init__(self):
self.reference_translations = {} # Load from reference corpus
def calculate_bleu_score(self, candidate, reference):
"""Calculate BLEU score for translation quality"""
candidate_tokens = candidate.lower().split()
reference_tokens = reference.lower().split()
# Calculate n-gram precision for n=1,2,3,4
precisions = []
for n in range(1, 5):
candidate_ngrams = self.get_ngrams(candidate_tokens, n)
reference_ngrams = self.get_ngrams(reference_tokens, n)
if len(candidate_ngrams) == 0:
precision = 0
else:
matches = sum(min(candidate_ngrams[ngram], reference_ngrams.get(ngram, 0))
for ngram in candidate_ngrams)
precision = matches / len(candidate_ngrams)
precisions.append(precision)
# Brevity penalty
candidate_length = len(candidate_tokens)
reference_length = len(reference_tokens)
if candidate_length > reference_length:
bp = 1
else:
bp = math.exp(1 - reference_length / candidate_length)
# Calculate BLEU
if min(precisions) > 0:
bleu = bp * math.exp(sum(math.log(p) for p in precisions) / 4)
else:
bleu = 0
return bleu
def get_ngrams(self, tokens, n):
"""Extract n-grams from token list"""
ngrams = Counter()
for i in range(len(tokens) - n + 1):
ngram = tuple(tokens[i:i + n])
ngrams[ngram] += 1
return ngrams
def calculate_cultural_preservation_score(self, cultural_validation_results):
"""Calculate score based on cultural context preservation"""
base_score = cultural_validation_results.get('cultural_accuracy_score', 0.0)
# Penalty for missing cultural context
missing_context_penalty = len(cultural_validation_results.get('missing_context', [])) * 0.1
# Bonus for proper cultural explanations
proper_translations_bonus = len(cultural_validation_results.get('proper_translations', [])) * 0.05
final_score = max(0.0, min(1.0, base_score - missing_context_penalty + proper_translations_bonus))
return final_score
4. Comprehensive Quality Assessment Pipeline
class TranslationQualityAssessment:
def __init__(self, reference_corpus_path=None):
self.cultural_validator = ChuukeseCulturalValidator()
self.linguistic_checker = ChuukeseLinguisticChecker()
self.metrics_calculator = TranslationQualityMetrics()
if reference_corpus_path:
self.load_reference_corpus(reference_corpus_path)
def assess_translation_quality(self, chuukese_text, english_translation, reference_translation=None):
"""Comprehensive translation quality assessment"""
assessment_report = {
'overall_quality_score': 0.0,
'cultural_validation': {},
'linguistic_accuracy': {},
'automated_metrics': {},
'recommendations': []
}
# Cultural context validation
cultural_results = self.cultural_validator.validate_cultural_preservation(
chuukese_text, english_translation
)
assessment_report['cultural_validation'] = cultural_results
# Linguistic accuracy check
linguistic_results = self.linguistic_checker.check_grammatical_accuracy(
chuukese_text, english_translation
)
assessment_report['linguistic_accuracy'] = linguistic_results
# Automated metrics
metrics = {}
if reference_translation:
metrics['bleu_score'] = self.metrics_calculator.calculate_bleu_score(
english_translation, reference_translation
)
metrics['cultural_preservation_score'] = self.metrics_calculator.calculate_cultural_preservation_score(
cultural_results
)
assessment_report['automated_metrics'] = metrics
# Calculate overall quality score
overall_score = self.calculate_overall_score(cultural_results, linguistic_results, metrics)
assessment_report['overall_quality_score'] = overall_score
# Generate recommendations
recommendations = self.generate_recommendations(cultural_results, linguistic_results, metrics)
assessment_report['recommendations'] = recommendations
return assessment_report
def calculate_overall_score(self, cultural_results, linguistic_results, metrics):
"""Calculate weighted overall quality score"""
cultural_score = metrics.get('cultural_preservation_score', 0.0)
linguistic_score = 1.0 if linguistic_results.get('tense_consistency', False) and linguistic_results.get('structure_preservation', False) else 0.5
bleu_score = metrics.get('bleu_score', 0.0)
# Weighted average (cultural context heavily weighted for Chuukese)
overall_score = (cultural_score * 0.4 + linguistic_score * 0.4 + bleu_score * 0.2)
return round(overall_score, 3)
def generate_recommendations(self, cultural_results, linguistic_results, metrics):
"""Generate actionable recommendations for translation improvement"""
recommendations = []
# Cultural recommendations
if cultural_results.get('cultural_accuracy_score', 0) < 0.8:
recommendations.append("Consider adding cultural context or explanations for traditional terms")
for missing in cultural_results.get('missing_context', []):
recommendations.append(f"Improve translation of '{missing['term']}': {missing['suggestion']}")
# Linguistic recommendations
if not linguistic_results.get('tense_consistency', True):
recommendations.append("Review tense consistency between source and target languages")
if not linguistic_results.get('structure_preservation', True):
recommendations.append("Preserve sentence structure and question forms from source language")
# Metric-based recommendations
if metrics.get('bleu_score', 0) < 0.3:
recommendations.append("Consider improving lexical similarity with reference translations")
return recommendations
Usage Examples
Basic Translation Assessment
# Initialize assessment system
assessor = TranslationQualityAssessment("reference_corpus.json")
# Assess a translation
chuukese_text = "Kopwe pwan chomong ngonuk ekkewe chon Chuuk"
english_translation = "We will help those Chuukese people"
reference_translation = "We shall assist the people of Chuuk"
assessment = assessor.assess_translation_quality(
chuukese_text,
english_translation,
reference_translation
)
print(f"Overall Quality Score: {assessment['overall_quality_score']}")
for recommendation in assessment['recommendations']:
print(f"- {recommendation}")
Batch Translation Evaluation
def evaluate_translation_batch(translation_pairs):
"""Evaluate multiple translations and generate summary report"""
results = []
total_score = 0
for pair in translation_pairs:
assessment = assessor.assess_translation_quality(
pair['chuukese'],
pair['english'],
pair.get('reference')
)
results.append(assessment)
total_score += assessment['overall_quality_score']
average_score = total_score / len(translation_pairs)
summary_report = {
'average_quality_score': average_score,
'total_assessments': len(translation_pairs),
'individual_results': results,
'common_issues': identify_common_issues(results)
}
return summary_report
Best Practices
Quality Assessment
- Multiple validation layers: Combine automated metrics with cultural validation
- Reference corpus usage: Maintain high-quality reference translations for comparison
- Community validation: Involve native speakers in quality assessment
- Continuous improvement: Update assessment criteria based on feedback
Cultural Sensitivity
- Context preservation: Ensure cultural concepts are properly explained
- Respect levels: Validate appropriate formality and respect markers
- Traditional knowledge: Incorporate understanding of Chuukese customs
- Community standards: Align with community expectations for translation quality
Technical Implementation
- Comprehensive metrics: Use multiple quality indicators
- Actionable feedback: Provide specific, implementable recommendations
- Scalable assessment: Design for batch processing and automation
- Continuous learning: Adapt assessment criteria based on new insights
Dependencies
re: Regular expression pattern matchingmath: Mathematical operations for scoringcollections: Counter for n-gram analysisjson: Reference corpus data handlingnltk: Natural language processing utilities
Validation Criteria
A successful implementation should:
- ✅ Accurately assess cultural context preservation
- ✅ Validate linguistic accuracy and grammatical consistency
- ✅ Provide meaningful quality scores and metrics
- ✅ Generate actionable recommendations for improvement
- ✅ Handle both individual and batch assessments
- ✅ Integrate with existing translation workflows
- ✅ Support continuous quality monitoring and improvement