| name | debug-cuda-crash |
| description | Tutorial for debugging CUDA crashes using API logging |
Tutorial: Debugging CUDA Crashes with API Logging
This tutorial shows you how to debug CUDA crashes and errors in FlashInfer using the @flashinfer_api logging decorator.
Goal
When your code crashes with CUDA errors (illegal memory access, out-of-bounds, NaN/Inf), use API logging to:
- Capture input tensors BEFORE the crash occurs
- Understand what data caused the problem
- Track tensor shapes, dtypes, and values through your pipeline
- Detect numerical issues (NaN, Inf, wrong shapes)
Why Use API Logging?
Problem: CUDA errors often crash the program, leaving no debugging information.
Solution: FlashInfer's @flashinfer_api decorator logs inputs BEFORE execution, so you can see what caused the crash even after the program terminates.
Step 1: Enable API Logging
Basic Logging (Function Names Only)
export FLASHINFER_LOGLEVEL=1 # Log function names
export FLASHINFER_LOGDEST=stdout # Log to console
python my_script.py
Output:
[2025-12-18 10:30:45] FlashInfer API Call: batch_decode_with_padded_kv_cache
Detailed Logging (Inputs/Outputs with Metadata)
export FLASHINFER_LOGLEVEL=3 # Log inputs/outputs with metadata
export FLASHINFER_LOGDEST=debug.log # Save to file
python my_script.py
Output in debug.log:
================================================================================
[2025-12-18 10:30:45] FlashInfer API Logging - System Information
================================================================================
FlashInfer version: 0.6.0
CUDA toolkit version: 12.1
GPU 0: NVIDIA H100 PCIe
Compute capability: 9.0 (SM90)
PyTorch version: 2.1.0
================================================================================
================================================================================
[2025-12-18 10:30:46] FlashInfer API Call: batch_decode_with_padded_kv_cache
--------------------------------------------------------------------------------
Positional input arguments:
arg[0]:
Tensor(
shape=(32, 8, 128)
dtype=torch.bfloat16
device=cuda:0
requires_grad=False
is_contiguous=True
)
Keyword input arguments:
kv_cache=
Tensor(
shape=(1024, 2, 8, 128)
dtype=torch.bfloat16
device=cuda:0
requires_grad=False
is_contiguous=True
)
Full Logging (With Tensor Statistics)
export FLASHINFER_LOGLEVEL=5 # Log with min/max/mean/nan/inf
export FLASHINFER_LOGDEST=debug.log
python my_script.py
Additional output:
Tensor(
shape=(32, 8, 128)
dtype=torch.bfloat16
device=cuda:0
requires_grad=False
is_contiguous=True
min=-3.125000
max=4.250000
mean=0.015625
nan_count=0
inf_count=0
)
Step 2: Reproduce the Crash
Example: Shape Mismatch
Your code crashes with:
RuntimeError: CUDA error: an illegal memory access was encountered
Enable logging and run again:
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=crash_log.txt
python my_script.py
The log shows inputs before the crash:
[2025-12-18 10:32:15] FlashInfer API Call: batch_decode_with_padded_kv_cache
Positional input arguments:
arg[0]:
Tensor(
shape=(32, 8, 128) # Query tensor
...
)
Keyword input arguments:
kv_cache=
Tensor(
shape=(1024, 2, 8, 64) # ❌ Wrong! Should be (..., 128) not (..., 64)
...
)
Found the bug: head_dim mismatch (64 vs 128)
Step 3: Common CUDA Errors and How to Debug
Error 1: Illegal Memory Access
Error Message:
RuntimeError: CUDA error: an illegal memory access was encountered
Enable logging:
export FLASHINFER_LOGLEVEL=3
python my_script.py
What to check in logs:
- ✅ Tensor shapes match expected dimensions
- ✅ All tensors are on CUDA (not CPU)
- ✅ Tensor strides are reasonable
- ✅
is_contiguous=True(if required)
Common causes:
- Wrong tensor dimensions
- CPU tensor passed to GPU kernel
- Incorrect stride patterns
Error 2: NaN or Inf Values
Error Message:
RuntimeError: Function ... returned nan or inf
Enable statistics logging:
export FLASHINFER_LOGLEVEL=5 # Level 5 shows nan_count, inf_count
python my_script.py
What to check in logs:
Tensor(
...
min=-1234567.000000 # ❌ Suspiciously large
max=9876543.000000 # ❌ Suspiciously large
mean=nan # ❌ NaN detected
nan_count=128 # ❌ 128 NaN values!
inf_count=0
)
Common causes:
- Division by zero in previous operation
- Numerical overflow/underflow
- Uninitialized memory
Error 3: Out of Memory
Error Message:
RuntimeError: CUDA out of memory
Enable logging:
export FLASHINFER_LOGLEVEL=3
python my_script.py
What to check in logs:
- ✅ Tensor shapes (are they unexpectedly large?)
- ✅ Batch size
- ✅ Sequence length
Example:
Tensor(
shape=(1024, 8192, 128, 128) # ❌ Way too large! Should be (1024, 128, 128)?
...
)
Error 4: Wrong Dtype
Error Message:
RuntimeError: expected scalar type BFloat16 but found Float16
Enable logging:
export FLASHINFER_LOGLEVEL=3
python my_script.py
What to check in logs:
Tensor(
dtype=torch.float16 # ❌ Should be torch.bfloat16
...
)
Step 4: Multi-Process Debugging
When running with multiple GPUs/processes, use %i pattern:
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=debug_rank_%i.txt # %i = process ID
torchrun --nproc_per_node=4 my_script.py
This creates separate logs:
debug_rank_12345.txt(process 12345)debug_rank_12346.txt(process 12346)debug_rank_12347.txt(process 12347)debug_rank_12348.txt(process 12348)
Now you can debug each rank independently.
Step 5: Advanced Debugging with compute-sanitizer
For harder bugs, combine API logging with CUDA tools:
Use compute-sanitizer (Memory Checker)
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=debug.log
compute-sanitizer --tool memcheck python my_script.py
Output shows exact memory errors:
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 4 bytes
========= at 0x1234 in ScaleKernel<float>
========= by thread (256,0,0) in block (10,0,0)
========= Address 0x7f1234567890 is out of bounds
Check debug.log to see what inputs caused this kernel to fail.
Use cuda-gdb (Debugger)
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=debug.log
cuda-gdb --args python my_script.py
In gdb:
(cuda-gdb) run
(cuda-gdb) where # Show stack trace when it crashes
Check debug.log for the inputs that led to the crash.
Step 6: Kernel-Level Debugging with printf()
You can use printf() inside CUDA kernels for debugging:
Basic Usage
__global__ void MyKernel(const float* input, float* output, int n) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// Print from one thread to avoid spam
if (threadIdx.x == 0 && blockIdx.x == 0) {
printf("n=%d, input[0]=%f\n", n, input[0]);
}
if (idx < n) {
output[idx] = input[idx] * 2.0f;
}
}
Important: Flush printf buffer after kernel:
my_kernel(input, output)
torch.cuda.synchronize() # ← Flushes printf output
⚠️ Warp-Specialized Kernels: Choosing the Right Print Thread
Problem: threadIdx.x == 0 doesn't work for all warps (warp starting at thread 32 won't have thread 0).
Solution: Choose one representative thread per specialization group.
__global__ void WarpSpecializedKernel(...) {
// Define your group's representative thread
// e.g., first thread of each warp: threadIdx.x % 32 == 0
// e.g., first thread of each 4-warp group: threadIdx.x % 128 == 0
if (is_group_representative) {
printf("Group %d processing\n", group_id);
}
}
Common mistake ❌:
// ❌ Only warp 0 will print!
if (threadIdx.x == 0) {
printf("Warp %d processing\n", threadIdx.x / 32);
}
Quick Reference
| Kernel Type | Print Condition | Notes |
|---|---|---|
| Simple kernel | threadIdx.x == 0 |
One thread per block |
| Warp-specialized | One thread per group | Depends on kernel design |
Other Kernel Debugging Tools
// Assert for invariants
assert(value >= 0.0f && "Value must be non-negative");
// Compile-time checks
static_assert(BLOCK_SIZE % 32 == 0, "BLOCK_SIZE must be multiple of warp size");
Environment Variables Reference
| Variable | Values | Description |
|---|---|---|
FLASHINFER_LOGLEVEL |
0 |
No logging (default) |
1 |
Function names only | |
3 |
Inputs/outputs with metadata | |
5 |
+ Tensor statistics (min/max/mean/nan/inf) | |
FLASHINFER_LOGDEST |
stdout |
Log to console (default) |
stderr |
Log to stderr | |
<path> |
Log to file | |
log_%i.txt |
Multi-process: %i = process ID |
Best Practices
1. Always Start with Level 3
export FLASHINFER_LOGLEVEL=3
Level 3 provides tensor metadata (shape, dtype, device) without overwhelming output.
2. Use Level 5 for Numerical Issues
export FLASHINFER_LOGLEVEL=5
Only use level 5 when debugging NaN/Inf problems (adds statistics).
3. Log to File for Crashes
export FLASHINFER_LOGDEST=crash_log.txt
Console output may be lost when program crashes. File logs persist.
4. Compare Before/After
Enable logging and compare:
- Last successful API call (inputs logged, outputs logged) ✅
- First failed API call (inputs logged, no outputs) ❌ ← This is where it crashed!
5. Disable Logging in Production
unset FLASHINFER_LOGLEVEL # or export FLASHINFER_LOGLEVEL=0
Logging has zero overhead when disabled (decorator returns original function).
Troubleshooting
No Logs Appearing
Problem: Set FLASHINFER_LOGLEVEL=3 but no logs appear
Solutions:
Check if API has the decorator: Not all FlashInfer APIs have
@flashinfer_apiyet (work in progress)Verify environment variable:
echo $FLASHINFER_LOGLEVEL # Should print "3"Check log destination:
echo $FLASHINFER_LOGDEST # Should print path or "stdout"
Too Much Output
Problem: Level 5 produces too much output
Solution: Use level 3 instead:
export FLASHINFER_LOGLEVEL=3 # Skip tensor statistics
Statistics Skipped in CUDA Graph
Warning: [statistics skipped: CUDA graph capture in progress]
What it means: Level 5 statistics are automatically skipped during CUDA graph capture (to avoid synchronization)
This is normal: The framework protects you from graph capture issues.
Quick Examples
Debug Shape Mismatch
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=stdout
python my_script.py
# Check tensor shapes in output
Debug NaN/Inf
export FLASHINFER_LOGLEVEL=5 # Show statistics
export FLASHINFER_LOGDEST=debug.log
python my_script.py
# Check nan_count and inf_count in debug.log
Debug Multi-GPU Training
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=rank_%i.log # Separate log per rank
torchrun --nproc_per_node=8 train.py
# Check rank_*.log files
Combine with Memory Checker
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=inputs.log
compute-sanitizer --tool memcheck python my_script.py
# inputs.log shows what data caused the memory error
Example: Full Debug Session
Your code crashes:
import torch
from flashinfer import batch_decode_with_padded_kv_cache
q = torch.randn(32, 8, 128, dtype=torch.bfloat16, device="cuda")
kv = torch.randn(1024, 2, 8, 64, dtype=torch.bfloat16, device="cuda") # Wrong dim!
output = batch_decode_with_padded_kv_cache(q, kv) # ❌ Crashes
Enable logging:
export FLASHINFER_LOGLEVEL=3
export FLASHINFER_LOGDEST=debug.log
python test.py
Check debug.log:
[2025-12-18 10:45:23] FlashInfer API Call: batch_decode_with_padded_kv_cache
Positional input arguments:
arg[0]:
Tensor(
shape=(32, 8, 128)
dtype=torch.bfloat16
...
)
arg[1]:
Tensor(
shape=(1024, 2, 8, 64) # ❌ Found it! Last dim should be 128
dtype=torch.bfloat16
...
)
Fix the bug:
kv = torch.randn(1024, 2, 8, 128, dtype=torch.bfloat16, device="cuda") # ✅ Fixed
Success!
python test.py
# No crash, outputs logged successfully
Summary
Enable logging before the crash:
export FLASHINFER_LOGLEVEL=3 export FLASHINFER_LOGDEST=debug.logRun your code - inputs are logged BEFORE crash
Check the log - last API call shows what caused the crash
Fix the issue based on logged input metadata
Disable logging when done:
export FLASHINFER_LOGLEVEL=0
Related Documentation
- See CLAUDE.md "API Logging with @flashinfer_api" for technical details
- See
flashinfer/api_logging.pyfor implementation - See CUDA documentation for compute-sanitizer and cuda-gdb