Claude Code Plugins

Community-maintained marketplace

Feedback

agentic-orchestration

@frankxai/ai-architect
0
0

Patterns for multi-agent coordination, task decomposition, handoffs, and workflow orchestration. Best practices for building and managing agent systems.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name agentic-orchestration
description Patterns for multi-agent coordination, task decomposition, handoffs, and workflow orchestration. Best practices for building and managing agent systems.
version 1.1.0
last_updated Tue Jan 06 2026 00:00:00 GMT+0000 (Coordinated Universal Time)
external_version Claude Opus 4.5, LangGraph 1.0, OpenAI Agents 0.6.4
changelog - 1.1.0: Updated for 2026 agent frameworks (LangGraph 1.0 GA, OpenAI Agents 0.6.4) - 1.0.0: Initial skill with orchestration patterns from Claude Agent SDK and FrankX system

Agentic Orchestration Patterns

This skill covers patterns for coordinating multiple AI agents, decomposing complex tasks, managing handoffs, and building robust agent workflows.


Orchestration Fundamentals

Agent Hierarchy Model

┌─────────────────────────────────────────────────────┐
│              ORCHESTRATOR AGENT                      │
│  (Strategic coordination, task routing, synthesis)   │
├─────────────────────────────────────────────────────┤
│                                                      │
│  ┌──────────────┐  ┌──────────────┐  ┌────────────┐ │
│  │  Specialist  │  │  Specialist  │  │ Specialist │ │
│  │   Agent A    │  │   Agent B    │  │  Agent C   │ │
│  │  (Domain 1)  │  │  (Domain 2)  │  │ (Domain 3) │ │
│  └──────────────┘  └──────────────┘  └────────────┘ │
│                                                      │
└─────────────────────────────────────────────────────┘

Core Principles

  1. Single Responsibility: Each agent has one clear domain
  2. Explicit Handoffs: Clear protocols for transferring work
  3. Context Preservation: State travels with the task
  4. Graceful Degradation: System works if agents fail
  5. Observable Execution: Can see what each agent is doing

Task Decomposition Patterns

Pattern 1: Hierarchical Decomposition

Complex Task: "Build a feature for user authentication"

Decomposed:
├── Research Phase (Research Agent)
│   ├── Analyze existing auth patterns in codebase
│   ├── Identify dependencies and constraints
│   └── Document findings
│
├── Design Phase (Architect Agent)
│   ├── Design auth flow
│   ├── Define API contracts
│   └── Create component structure
│
├── Implementation Phase (Developer Agent)
│   ├── Implement backend auth logic
│   ├── Build frontend components
│   └── Add error handling
│
├── Testing Phase (QA Agent)
│   ├── Write unit tests
│   ├── Integration tests
│   └── Security review
│
└── Documentation Phase (Docs Agent)
    ├── API documentation
    ├── User guide
    └── Developer notes

Pattern 2: Parallel Decomposition

Task: "Analyze codebase and suggest improvements"

Parallel Execution:
┌─────────────────────────────────────────────────────┐
│                    ORCHESTRATOR                      │
│                Spawns parallel agents                │
└───────────┬─────────────┬─────────────┬────────────┘
            │             │             │
            ▼             ▼             ▼
    ┌───────────┐  ┌───────────┐  ┌───────────┐
    │ Security  │  │Performance│  │   Code    │
    │  Analyst  │  │  Analyst  │  │  Quality  │
    └─────┬─────┘  └─────┬─────┘  └─────┬─────┘
          │              │              │
          ▼              ▼              ▼
    [Security     [Performance   [Quality
     Report]       Report]        Report]
          │              │              │
          └──────────────┼──────────────┘
                         │
                         ▼
              ┌─────────────────┐
              │   ORCHESTRATOR  │
              │    Synthesizes  │
              └─────────────────┘

Pattern 3: Iterative Refinement

Task: "Write a technical blog post"

Iteration Loop:
1. Researcher → Gathers information
2. Writer → Creates draft
3. Editor → Reviews and critiques
4. Writer → Revises based on feedback
5. Editor → Approves or requests more changes
6. Repeat 4-5 until quality threshold met
7. Publisher → Formats and publishes

Handoff Patterns

Pattern 1: Explicit Handoff Protocol

interface TaskHandoff {
  from_agent: string;
  to_agent: string;
  task_id: string;
  context: {
    original_request: string;
    work_completed: string[];
    current_state: any;
    next_steps: string[];
  };
  artifacts: {
    files_created: string[];
    files_modified: string[];
    decisions_made: Decision[];
  };
}

// Example handoff
const handoff: TaskHandoff = {
  from_agent: "ArchitectAgent",
  to_agent: "DeveloperAgent",
  task_id: "auth-feature-123",
  context: {
    original_request: "Implement user authentication",
    work_completed: [
      "Analyzed existing patterns",
      "Designed auth flow",
      "Created API contracts"
    ],
    current_state: {
      design_doc: "/docs/auth-design.md",
      api_spec: "/specs/auth-api.yaml"
    },
    next_steps: [
      "Implement AuthService class",
      "Create login/logout endpoints",
      "Build session management"
    ]
  },
  artifacts: {
    files_created: ["/docs/auth-design.md", "/specs/auth-api.yaml"],
    files_modified: [],
    decisions_made: [
      { decision: "Use JWT for tokens", rationale: "Stateless, scalable" },
      { decision: "Redis for session store", rationale: "Fast, supports TTL" }
    ]
  }
};

Pattern 2: Capability-Based Routing

const agentCapabilities = {
  ResearchAgent: ["search", "analyze", "summarize", "compare"],
  ArchitectAgent: ["design", "plan", "structure", "evaluate"],
  DeveloperAgent: ["implement", "refactor", "debug", "optimize"],
  ReviewerAgent: ["review", "critique", "validate", "approve"],
  DocsAgent: ["document", "explain", "format", "publish"]
};

function routeTask(task: string): string {
  const taskVerb = extractVerb(task);

  for (const [agent, capabilities] of Object.entries(agentCapabilities)) {
    if (capabilities.includes(taskVerb)) {
      return agent;
    }
  }

  return "GeneralAgent"; // Fallback
}

Pattern 3: Context Window Management

// Problem: Context grows as agents work
// Solution: Summarize and compress at handoffs

interface CompressedContext {
  essential: {
    task_goal: string;
    key_decisions: string[];
    current_blockers: string[];
  };
  reference: {
    file_paths: string[];      // Can be re-read if needed
    doc_links: string[];       // External references
  };
  discarded: {
    exploration_notes: string; // Summarized, not full content
    rejected_approaches: string[];
  };
}

function compressForHandoff(fullContext: any): CompressedContext {
  return {
    essential: extractEssentials(fullContext),
    reference: extractReferences(fullContext),
    discarded: summarizeDiscarded(fullContext)
  };
}

Coordination Patterns

Pattern 1: Conductor Model

One orchestrator coordinates all activity:

┌─────────────────────────────────────────────┐
│             CONDUCTOR AGENT                  │
│  - Receives initial request                  │
│  - Decomposes into subtasks                  │
│  - Assigns to specialist agents              │
│  - Monitors progress                         │
│  - Synthesizes results                       │
│  - Handles failures and retries              │
└─────────────────────────────────────────────┘

Best for: Complex projects with many dependencies
Example: FrankX Starlight Orchestrator

Pattern 2: Pipeline Model

Sequential processing through specialized stages:

Request → [Agent A] → [Agent B] → [Agent C] → Result
             │            │            │
           Stage 1     Stage 2      Stage 3
          Research     Design      Execute

Best for: Well-defined workflows with clear stages
Example: Content creation pipeline

Pattern 3: Swarm Model

Multiple agents work in parallel, coordinating peer-to-peer:

     ┌────────┐
     │Agent A │←──────────────────┐
     └───┬────┘                   │
         │                        │
    ┌────▼────┐              ┌────┴───┐
    │ Agent B │◄────────────►│Agent D │
    └────┬────┘              └────┬───┘
         │                        │
     ┌───▼────┐                   │
     │Agent C │◄──────────────────┘
     └────────┘

Best for: Exploratory tasks, parallel research
Example: Codebase analysis from multiple angles

Pattern 4: Blackboard Model

Shared workspace that all agents read/write:

┌─────────────────────────────────────────┐
│             BLACKBOARD                   │
│  ┌─────────────────────────────────┐    │
│  │ Current State: { ... }          │    │
│  │ Hypotheses: [ ... ]             │    │
│  │ Evidence: [ ... ]               │    │
│  │ Conclusions: [ ... ]            │    │
│  └─────────────────────────────────┘    │
└─────────────────────────────────────────┘
        │           │           │
   ┌────▼───┐  ┌────▼───┐  ┌────▼───┐
   │Agent A │  │Agent B │  │Agent C │
   │ reads  │  │ reads  │  │ reads  │
   │ writes │  │ writes │  │ writes │
   └────────┘  └────────┘  └────────┘

Best for: Complex problem-solving with evolving understanding
Example: Debugging a complex system issue

Error Handling & Recovery

Pattern 1: Retry with Backoff

async function executeWithRetry(agent, task, maxRetries = 3) {
  for (let attempt = 1; attempt <= maxRetries; attempt++) {
    try {
      return await agent.execute(task);
    } catch (error) {
      if (attempt === maxRetries) throw error;

      const delay = Math.pow(2, attempt) * 1000; // Exponential backoff
      console.log(`Attempt ${attempt} failed, retrying in ${delay}ms`);
      await sleep(delay);
    }
  }
}

Pattern 2: Fallback Agents

const agentFallbacks = {
  "SpecialistCodeReviewer": ["GeneralCodeReviewer", "SeniorDeveloper"],
  "SecurityAnalyst": ["GeneralAnalyst", "SeniorDeveloper"],
  "PerformanceExpert": ["GeneralAnalyst", "SeniorDeveloper"]
};

async function executeWithFallback(primaryAgent, task) {
  try {
    return await primaryAgent.execute(task);
  } catch (error) {
    const fallbacks = agentFallbacks[primaryAgent.name] || [];

    for (const fallbackName of fallbacks) {
      try {
        console.log(`Primary failed, trying ${fallbackName}`);
        return await getAgent(fallbackName).execute(task);
      } catch (fallbackError) {
        continue;
      }
    }

    throw new Error(`All agents failed for task: ${task.id}`);
  }
}

Pattern 3: Checkpoint & Resume

interface Checkpoint {
  task_id: string;
  completed_steps: string[];
  current_step: string;
  state: any;
  timestamp: Date;
}

async function executeWithCheckpoints(task, steps) {
  const checkpoint = await loadCheckpoint(task.id);
  const startIndex = checkpoint
    ? steps.indexOf(checkpoint.current_step)
    : 0;

  for (let i = startIndex; i < steps.length; i++) {
    const step = steps[i];

    try {
      await executeStep(step, task);
      await saveCheckpoint({
        task_id: task.id,
        completed_steps: steps.slice(0, i + 1),
        current_step: steps[i + 1] || "complete",
        state: task.state,
        timestamp: new Date()
      });
    } catch (error) {
      // Checkpoint is saved, can resume from here
      throw error;
    }
  }
}

Observability Patterns

Pattern 1: Structured Logging

function agentLog(agent, event, details) {
  console.log(JSON.stringify({
    timestamp: new Date().toISOString(),
    agent: agent.name,
    task_id: agent.currentTask?.id,
    event: event,
    details: details,
    duration_ms: details.duration,
    tokens_used: details.tokens
  }));
}

// Usage
agentLog(agent, "TASK_START", { task: task.description });
agentLog(agent, "TOOL_CALL", { tool: "read_file", path: "/src/index.ts" });
agentLog(agent, "TASK_COMPLETE", { result: "success", duration: 5230 });

Pattern 2: Progress Tracking

interface TaskProgress {
  task_id: string;
  total_steps: number;
  completed_steps: number;
  current_step: string;
  estimated_remaining: number; // seconds
  agents_involved: string[];
}

// Expose progress for UI/monitoring
function getProgress(task): TaskProgress {
  return {
    task_id: task.id,
    total_steps: task.steps.length,
    completed_steps: task.completedSteps.length,
    current_step: task.currentStep?.description || "idle",
    estimated_remaining: estimateRemaining(task),
    agents_involved: task.agentHistory
  };
}

Pattern 3: Decision Audit Trail

interface Decision {
  timestamp: Date;
  agent: string;
  decision: string;
  options_considered: string[];
  rationale: string;
  confidence: number; // 0-1
  reversible: boolean;
}

// Track all significant decisions
const decisionLog: Decision[] = [];

function recordDecision(agent, decision, options, rationale, confidence) {
  decisionLog.push({
    timestamp: new Date(),
    agent: agent.name,
    decision,
    options_considered: options,
    rationale,
    confidence,
    reversible: true
  });
}

FrankX System Application

Starlight Orchestrator Pattern

The FrankX system uses weighted synthesis:

┌────────────────────────────────────────────────────┐
│              STARLIGHT ORCHESTRATOR                 │
│        (Meta-intelligence coordinator)              │
├────────────────────────────────────────────────────┤
│                                                     │
│  Weight Distribution for Strategic Decisions:       │
│  ├── Starlight Architect: 30%  (Systems design)    │
│  ├── Creation Engine: 25%      (Content/product)   │
│  ├── Luminor Oracle: 25%       (Future strategy)   │
│  └── Frequency Alchemist: 20%  (Consciousness)     │
│                                                     │
│  Synthesis Process:                                 │
│  1. Each agent provides perspective                 │
│  2. Orchestrator weights by domain relevance       │
│  3. Conflicts are explicitly surfaced              │
│  4. Final recommendation synthesizes all views     │
│                                                     │
└────────────────────────────────────────────────────┘

Agent Team Patterns in FrankX

Book Writing Team:

  • Master Story Architect → Design
  • Genre Writer → Draft
  • Editor → Review cycles
  • Sensitivity Reader → Final check
  • Continuity Guardian → Consistency

Arcanea Development Team:

  • Architect → Design
  • Frontend Specialist → UI
  • Backend Specialist → API
  • AI Specialist → Luminor integration
  • DevOps → Deployment

Anti-Patterns to Avoid

❌ God Agent

One agent that does everything - no specialization, no delegation.

❌ Agent Explosion

Too many tiny agents with overlapping responsibilities.

❌ Lost Context

Handoffs that don't preserve essential information.

❌ Infinite Loops

Agents that keep handing work back and forth.

❌ Silent Failures

Agents that fail without proper error reporting.

❌ Unobservable Execution

Can't see what agents are doing or why.


Good orchestration is invisible - the system should feel like one coherent intelligence, not a committee of bickering agents.