Claude Code Plugins

Community-maintained marketplace

Feedback

AWS AI Services Expert

@frankxai/ai-architect
0
0

Build AI applications on AWS using Bedrock, SageMaker, and AI/ML services with best practices for enterprise deployment

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name AWS AI Services Expert
description Build AI applications on AWS using Bedrock, SageMaker, and AI/ML services with best practices for enterprise deployment
version 1.1.0
last_updated Tue Jan 06 2026 00:00:00 GMT+0000 (Coordinated Universal Time)
external_version AWS Bedrock Claude/Llama
triggers AWS Bedrock, SageMaker, AWS AI, Amazon AI

AWS AI Services Expert

You are an expert in Amazon Web Services AI and ML services, specializing in Amazon Bedrock for foundation models, SageMaker for custom ML, and the broader AWS AI ecosystem.

AWS Bedrock

Overview

Amazon Bedrock is a fully managed service providing foundation models from leading AI companies through a single API.

Available Models

Provider Models Best For
Anthropic Claude 3.5 Sonnet, Claude 3 Opus/Sonnet/Haiku Complex reasoning, coding, analysis
Meta Llama 3.1 (8B/70B/405B) Open weights, customization
Mistral Mistral Large, Mixtral 8x7B European data residency, efficiency
Cohere Command R+, Command R, Embed Enterprise RAG, search
Amazon Titan Text, Titan Embeddings AWS-native integration
AI21 Jamba 1.5 Long context, efficiency
Stability Stable Diffusion Image generation

Basic Usage

import boto3
import json

# Initialize Bedrock client
bedrock = boto3.client(
    service_name='bedrock-runtime',
    region_name='us-east-1'
)

# Claude 3.5 Sonnet
def invoke_claude(prompt: str) -> str:
    response = bedrock.invoke_model(
        modelId='anthropic.claude-3-5-sonnet-20241022-v2:0',
        body=json.dumps({
            "anthropic_version": "bedrock-2023-05-31",
            "max_tokens": 1024,
            "messages": [
                {"role": "user", "content": prompt}
            ]
        })
    )
    result = json.loads(response['body'].read())
    return result['content'][0]['text']

# Llama 3.1
def invoke_llama(prompt: str) -> str:
    response = bedrock.invoke_model(
        modelId='meta.llama3-1-70b-instruct-v1:0',
        body=json.dumps({
            "prompt": f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>",
            "max_gen_len": 1024,
            "temperature": 0.7
        })
    )
    result = json.loads(response['body'].read())
    return result['generation']

Streaming Responses

def stream_claude(prompt: str):
    response = bedrock.invoke_model_with_response_stream(
        modelId='anthropic.claude-3-5-sonnet-20241022-v2:0',
        body=json.dumps({
            "anthropic_version": "bedrock-2023-05-31",
            "max_tokens": 1024,
            "messages": [{"role": "user", "content": prompt}]
        })
    )

    for event in response['body']:
        chunk = json.loads(event['chunk']['bytes'])
        if chunk['type'] == 'content_block_delta':
            yield chunk['delta']['text']

Embeddings with Titan

def get_embeddings(text: str) -> list:
    response = bedrock.invoke_model(
        modelId='amazon.titan-embed-text-v2:0',
        body=json.dumps({
            "inputText": text,
            "dimensions": 1024,
            "normalize": True
        })
    )
    result = json.loads(response['body'].read())
    return result['embedding']

Bedrock Knowledge Bases (RAG)

import boto3

bedrock_agent = boto3.client('bedrock-agent-runtime')

def query_knowledge_base(query: str, kb_id: str) -> str:
    response = bedrock_agent.retrieve_and_generate(
        input={'text': query},
        retrieveAndGenerateConfiguration={
            'type': 'KNOWLEDGE_BASE',
            'knowledgeBaseConfiguration': {
                'knowledgeBaseId': kb_id,
                'modelArn': 'arn:aws:bedrock:us-east-1::foundation-model/anthropic.claude-3-5-sonnet-20241022-v2:0',
                'retrievalConfiguration': {
                    'vectorSearchConfiguration': {
                        'numberOfResults': 5
                    }
                }
            }
        }
    )
    return response['output']['text']

Bedrock Agents

# Creating an agent programmatically
import boto3

bedrock_agent_client = boto3.client('bedrock-agent')

# Create agent
response = bedrock_agent_client.create_agent(
    agentName='customer-support-agent',
    foundationModel='anthropic.claude-3-5-sonnet-20241022-v2:0',
    instruction='''You are a customer support agent.
    Use the available tools to help customers with their orders.''',
    idleSessionTTLInSeconds=600
)

agent_id = response['agent']['agentId']

# Add action group (tools)
bedrock_agent_client.create_agent_action_group(
    agentId=agent_id,
    agentVersion='DRAFT',
    actionGroupName='order-management',
    actionGroupExecutor={
        'lambda': 'arn:aws:lambda:us-east-1:123456789:function:order-handler'
    },
    apiSchema={
        's3': {
            's3BucketName': 'my-schemas-bucket',
            's3ObjectKey': 'order-api-schema.json'
        }
    }
)

Amazon SageMaker

SageMaker for Custom Models

import sagemaker
from sagemaker.huggingface import HuggingFace

# Training job
huggingface_estimator = HuggingFace(
    entry_point='train.py',
    source_dir='./scripts',
    instance_type='ml.p4d.24xlarge',
    instance_count=1,
    role=sagemaker.get_execution_role(),
    transformers_version='4.36',
    pytorch_version='2.1',
    py_version='py310',
    hyperparameters={
        'model_name': 'meta-llama/Llama-3.1-8B',
        'epochs': 3,
        'learning_rate': 2e-5,
    }
)

huggingface_estimator.fit({'train': 's3://bucket/train-data/'})

SageMaker Endpoints

from sagemaker.huggingface import HuggingFaceModel

# Deploy model
hub_model = HuggingFaceModel(
    model_data='s3://bucket/model.tar.gz',
    role=sagemaker.get_execution_role(),
    transformers_version='4.36',
    pytorch_version='2.1',
    py_version='py310',
)

predictor = hub_model.deploy(
    initial_instance_count=1,
    instance_type='ml.g5.2xlarge',
    endpoint_name='my-llm-endpoint'
)

# Invoke
response = predictor.predict({
    "inputs": "What is machine learning?"
})

SageMaker JumpStart

from sagemaker.jumpstart.model import JumpStartModel

# Deploy foundation model from JumpStart
model = JumpStartModel(model_id="meta-textgeneration-llama-3-1-70b-instruct")
predictor = model.deploy()

# Use the model
response = predictor.predict({
    "inputs": "Explain quantum computing",
    "parameters": {"max_new_tokens": 256}
})

AWS AI Service Integration

Amazon Kendra (Enterprise Search)

import boto3

kendra = boto3.client('kendra')

# Query
response = kendra.query(
    IndexId='your-index-id',
    QueryText='What is our refund policy?',
    AttributeFilter={
        'EqualsTo': {
            'Key': 'Department',
            'Value': {'StringValue': 'Customer Service'}
        }
    }
)

for result in response['ResultItems']:
    print(f"Score: {result['ScoreAttributes']['ScoreConfidence']}")
    print(f"Answer: {result['DocumentExcerpt']['Text']}")

Amazon Comprehend (NLP)

comprehend = boto3.client('comprehend')

# Sentiment analysis
response = comprehend.detect_sentiment(
    Text="I love this product! It's amazing.",
    LanguageCode='en'
)
# {'Sentiment': 'POSITIVE', 'SentimentScore': {...}}

# Entity extraction
entities = comprehend.detect_entities(
    Text="Amazon was founded by Jeff Bezos in Seattle",
    LanguageCode='en'
)

Amazon Textract (Document AI)

textract = boto3.client('textract')

# Analyze document
response = textract.analyze_document(
    Document={'S3Object': {'Bucket': 'bucket', 'Name': 'invoice.pdf'}},
    FeatureTypes=['FORMS', 'TABLES']
)

# Extract key-value pairs
for block in response['Blocks']:
    if block['BlockType'] == 'KEY_VALUE_SET':
        # Process form fields
        pass

Architecture Patterns

Serverless AI Pipeline

┌─────────────────────────────────────────────────────────────────┐
│                  SERVERLESS AI ARCHITECTURE                      │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  API Gateway ──▶ Lambda ──▶ Bedrock                             │
│       │              │                                           │
│       │              ▼                                           │
│       │         DynamoDB (conversation history)                  │
│       │              │                                           │
│       │              ▼                                           │
│       │         S3 (documents)                                   │
│       │              │                                           │
│       │              ▼                                           │
│       │         OpenSearch (vector store)                        │
│       │                                                          │
│       └────────▶ CloudWatch (monitoring)                        │
│                                                                  │
└─────────────────────────────────────────────────────────────────┘

Enterprise RAG on AWS

# terraform/main.tf for RAG infrastructure
"""
module "bedrock_kb" {
  source = "./modules/bedrock-knowledge-base"

  name = "enterprise-kb"
  embedding_model = "amazon.titan-embed-text-v2:0"

  data_sources = [
    {
      type = "S3"
      bucket = aws_s3_bucket.documents.id
      prefix = "knowledge/"
    }
  ]

  vector_store = {
    type = "OPENSEARCH_SERVERLESS"
    collection_arn = aws_opensearchserverless_collection.vectors.arn
  }
}
"""

Pricing Optimization

Bedrock Pricing (per 1K tokens)

Model Input Output
Claude 3.5 Sonnet $0.003 $0.015
Claude 3 Haiku $0.00025 $0.00125
Llama 3.1 70B $0.00265 $0.0035
Titan Text Express $0.0002 $0.0006

Cost Optimization Strategies

class BedrockCostOptimizer:
    MODEL_COSTS = {
        "claude-3-5-sonnet": {"input": 0.003, "output": 0.015},
        "claude-3-haiku": {"input": 0.00025, "output": 0.00125},
        "llama-3-70b": {"input": 0.00265, "output": 0.0035},
    }

    def select_model(self, task_complexity: str, max_cost: float = None):
        """Select most cost-effective model for task"""
        if task_complexity == "simple":
            return "claude-3-haiku"  # Cheapest
        elif task_complexity == "moderate":
            return "llama-3-70b"  # Good balance
        else:
            return "claude-3-5-sonnet"  # Best capability

    def estimate_cost(self, model: str, input_tokens: int, output_tokens: int):
        costs = self.MODEL_COSTS[model]
        return (input_tokens * costs["input"] + output_tokens * costs["output"]) / 1000

Security Best Practices

IAM Policies

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "bedrock:InvokeModel",
        "bedrock:InvokeModelWithResponseStream"
      ],
      "Resource": [
        "arn:aws:bedrock:*::foundation-model/anthropic.claude-3-5-sonnet*",
        "arn:aws:bedrock:*::foundation-model/meta.llama3*"
      ],
      "Condition": {
        "StringEquals": {
          "aws:RequestedRegion": ["us-east-1", "us-west-2"]
        }
      }
    }
  ]
}

VPC Endpoints

resource "aws_vpc_endpoint" "bedrock" {
  vpc_id            = aws_vpc.main.id
  service_name      = "com.amazonaws.us-east-1.bedrock-runtime"
  vpc_endpoint_type = "Interface"
  subnet_ids        = aws_subnet.private[*].id
  security_group_ids = [aws_security_group.bedrock.id]
  private_dns_enabled = true
}

Resources