| name | effect-ai-prompt |
| description | Build prompts for Effect AI using messages, parts, and composition operators. Covers the complete Prompt API for constructing, merging, and manipulating conversations with language models. |
Effect AI Prompt Construction
Master the @effect/ai Prompt API for building type-safe conversations with language models.
Import Patterns
CRITICAL: Always use namespace imports:
import * as Prompt from "@effect/ai/Prompt"
import * as Response from "@effect/ai/Response"
import { pipe } from "effect"
When to Use This Skill
- Constructing messages for language model requests
- Building multi-turn conversation history
- Adding system instructions to prompts
- Integrating tool calls and results into conversations
- Converting streaming responses to prompt history
- Managing file/image attachments in messages
- Implementing custom chat interfaces
Conceptual Model
-- Message hierarchy
type Message = SystemMessage | UserMessage | AssistantMessage | ToolMessage
type Part = TextPart | ReasoningPart | FilePart | ToolCallPart | ToolResultPart
-- Composition
Prompt.make :: RawInput → Prompt
Prompt.merge :: (Prompt, RawInput) → Prompt
Prompt.setSystem :: (Prompt, String) → Prompt
-- History transformation
fromResponseParts :: ReadonlyArray<Response.Part> → Prompt
Message Types
Each message has role and content. Content is an array of Part objects.
System Messages
import * as Prompt from "@effect/ai/Prompt"
// String content only
const system = Prompt.makeMessage("system", {
content: "You are a helpful assistant specialized in mathematics."
})
// Shorthand constructor
const systemShorthand = Prompt.systemMessage({
content: "You are a helpful assistant specialized in mathematics."
})
// System message with options
const systemWithOptions = Prompt.makeMessage("system", {
content: "You are an expert coder.",
options: {
"anthropic": { cache_control: { type: "ephemeral" } }
}
})
User Messages
// Text-only user message
const userText = Prompt.makeMessage("user", {
content: [
Prompt.makePart("text", { text: "What is 2+2?" })
]
})
// Shorthand constructor
const userShorthand = Prompt.userMessage({
content: [
Prompt.makePart("text", { text: "What is 2+2?" })
]
})
// Multimodal user message (text + file)
const userMultimodal = Prompt.makeMessage("user", {
content: [
Prompt.makePart("text", { text: "What's in this image?" }),
Prompt.makePart("file", {
mediaType: "image/jpeg",
fileName: "photo.jpg",
data: new Uint8Array([...])
})
]
})
Assistant Messages
// Assistant response with text and tool call
const assistant = Prompt.makeMessage("assistant", {
content: [
Prompt.makePart("reasoning", {
text: "I need to check the weather using the tool."
}),
Prompt.makePart("tool-call", {
id: "call_123",
name: "get_weather",
params: { city: "Paris" },
providerExecuted: false
}),
Prompt.makePart("text", {
text: "The weather in Paris is sunny, 22°C."
})
]
})
// Shorthand constructor
const assistantShorthand = Prompt.assistantMessage({
content: [
Prompt.makePart("text", {
text: "The weather in Paris is sunny, 22°C."
})
]
})
Tool Messages
// Tool execution results
const toolMessage = Prompt.makeMessage("tool", {
content: [
Prompt.makePart("tool-result", {
id: "call_123",
name: "get_weather",
isFailure: false,
result: { temperature: 22, condition: "sunny" }
})
]
})
// Shorthand constructor
const toolShorthand = Prompt.toolMessage({
content: [
Prompt.makePart("tool-result", {
id: "call_123",
name: "get_weather",
isFailure: false,
result: { temperature: 22, condition: "sunny" }
})
]
})
Part Types
Text Part
const textPart = Prompt.makePart("text", {
text: "Hello, world!"
})
Reasoning Part
const reasoningPart = Prompt.makePart("reasoning", {
text: "Let me think step by step..."
})
File Part
// From URL
const fileFromUrl = Prompt.makePart("file", {
mediaType: "image/png",
fileName: "screenshot.png",
data: new URL("https://example.com/image.png")
})
// From bytes
const fileFromBytes = Prompt.makePart("file", {
mediaType: "application/pdf",
fileName: "report.pdf",
data: new Uint8Array([1, 2, 3])
})
// From base64
const fileFromBase64 = Prompt.makePart("file", {
mediaType: "image/jpeg",
data: "..."
})
Tool Call Part
const toolCall = Prompt.makePart("tool-call", {
id: "call_abc123",
name: "calculate",
params: { expression: "2 + 2" },
providerExecuted: false
})
Tool Result Part
const toolResult = Prompt.makePart("tool-result", {
id: "call_abc123",
name: "calculate",
isFailure: false,
result: 4
})
Prompt Construction
From String
// Creates a user message with text part
const prompt = Prompt.make("Hello, how are you?")
From Messages
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi!" }] }
])
From Existing Prompt
const copy = Prompt.make(existingPrompt)
Empty Prompt
const empty = Prompt.empty
From Messages Array
// Using fromMessages constructor
const messages: ReadonlyArray<Prompt.Message> = [
Prompt.systemMessage({ content: "You are an expert." }),
Prompt.userMessage({
content: [Prompt.makePart("text", { text: "Help me." })]
})
]
const prompt = Prompt.fromMessages(messages)
// Alternative: Using make with messages array
const prompt2 = Prompt.make([
Prompt.makeMessage("system", { content: "You are an expert." }),
Prompt.makeMessage("user", {
content: [Prompt.makePart("text", { text: "Help me." })]
})
])
Prompt Composition
Merge Prompts
import { pipe } from "effect"
const systemPrompt = Prompt.make([{
role: "system",
content: "You are a coding assistant."
}])
const userPrompt = Prompt.make("Write a function")
// Data-last (pipeline)
const combined = pipe(
systemPrompt,
Prompt.merge(userPrompt)
)
// Data-first
const combined2 = Prompt.merge(systemPrompt, userPrompt)
System Message Manipulation
import { pipe } from "effect"
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi" }] }
])
// Replace system message
const replaced = pipe(
prompt,
Prompt.setSystem("You are an expert in TypeScript.")
)
// Prepend to system message
const prepended = pipe(
prompt,
Prompt.prependSystem("IMPORTANT: ")
)
// Result: "IMPORTANT: You are helpful."
// Append to system message
const appended = pipe(
prompt,
Prompt.appendSystem(" Be concise.")
)
// Result: "You are helpful. Be concise."
History Management
Convert AI Response to Prompt
import * as Response from "@effect/ai/Response"
const responseParts: ReadonlyArray<Response.AnyPart> = [
Response.makePart("text", { text: "Hello!" }),
Response.makePart("tool-call", {
id: "call_1",
name: "get_time",
params: {},
providerExecuted: false
}),
Response.makePart("tool-result", {
id: "call_1",
name: "get_time",
isFailure: false,
result: "10:30 AM",
encodedResult: "10:30 AM",
providerExecuted: false
})
]
// Converts to assistant + tool messages
const historyPrompt = Prompt.fromResponseParts(responseParts)
Typical Chat Pattern
import { Effect } from "effect"
import * as SubscriptionRef from "effect/SubscriptionRef"
import * as LanguageModel from "@effect/ai/LanguageModel"
const chat = Effect.gen(function* () {
const history = yield* SubscriptionRef.make(Prompt.empty)
function* generateText(userInput: string) {
const currentHistory = yield* SubscriptionRef.get(history)
const prompt = pipe(
currentHistory,
Prompt.merge(userInput)
)
const response = yield* LanguageModel.generateText({ prompt })
// Update history with user input + response
const newHistory = pipe(
prompt,
Prompt.merge(Prompt.fromResponseParts(response.content))
)
yield* SubscriptionRef.set(history, newHistory)
return response
}
return { generateText }
})
Usage with LanguageModel
Generate Text
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect } from "effect"
const program = Effect.gen(function* () {
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Explain Effect" }] }
])
const response = yield* LanguageModel.generateText({ prompt })
return response.content
})
Stream Text
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect, Stream } from "effect"
const program = Effect.gen(function* () {
const prompt = Prompt.make("Write a story")
yield* LanguageModel.streamText({ prompt }).pipe(
Stream.runForEach((part) =>
part.type === "text-delta"
? Effect.sync(() => process.stdout.write(part.delta))
: Effect.void
)
)
})
Generate Object
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect, Schema } from "effect"
const Contact = Schema.Struct({
name: Schema.String,
email: Schema.String,
phone: Schema.optional(Schema.String)
})
const program = Effect.gen(function* () {
const prompt = Prompt.make(
"Extract: John Doe, john@example.com, 555-1234"
)
const response = yield* LanguageModel.generateObject({
prompt,
schema: Contact
})
return response.object
})
Provider-Specific Options
// Augment options interfaces via module augmentation
declare module "@effect/ai/Prompt" {
interface TextPartOptions {
readonly anthropic?: {
readonly cache_control?: {
readonly type: "ephemeral"
}
}
}
}
// Use in parts
const cachedPart = Prompt.makePart("text", {
text: "Large document...",
options: {
anthropic: { cache_control: { type: "ephemeral" } }
}
})
// Use in messages
const cachedMessage = Prompt.makeMessage("system", {
content: "You are an expert.",
options: {
anthropic: { cache_control: { type: "ephemeral" } }
}
})
Serialization
Export/Import
import * as Schema from "effect/Schema"
import { Effect } from "effect"
const encode = Schema.encode(Prompt.Prompt)
const decode = Schema.decodeUnknown(Prompt.Prompt)
const program = Effect.gen(function* () {
const prompt = Prompt.make("Hello")
// Export to structured data
const exported = yield* encode(prompt)
// Import from structured data
const imported = yield* decode(exported)
return imported
})
JSON Serialization
import * as Schema from "effect/Schema"
import { Effect } from "effect"
const encodeJson = Schema.encode(Prompt.FromJson)
const decodeJson = Schema.decodeUnknown(Prompt.FromJson)
const program = Effect.gen(function* () {
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi" }] }
])
// To JSON
const json = yield* encodeJson(prompt)
console.log(json) // string
// From JSON
const restored = yield* decodeJson(json)
return restored
})
Common Patterns
Multi-turn Conversation
const conversation = Prompt.make([
{ role: "system", content: "You are a math tutor." },
{ role: "user", content: [{ type: "text", text: "What is 2+2?" }] },
{ role: "assistant", content: [{ type: "text", text: "2+2 equals 4." }] },
{ role: "user", content: [{ type: "text", text: "What about 3+3?" }] }
])
Dynamic System Prompt
import { pipe } from "effect"
function withSystemPrompt(content: string) {
return (prompt: Prompt.Prompt) => pipe(
prompt,
Prompt.setSystem(content)
)
}
const userPrompt = Prompt.make("Help me code")
const withContext = pipe(
userPrompt,
withSystemPrompt("You are an expert TypeScript developer.")
)
Tool Interaction History
const toolInteraction = Prompt.make([
{ role: "user", content: [{ type: "text", text: "What's the weather?" }] },
{
role: "assistant",
content: [
{ type: "tool-call", id: "1", name: "weather", params: {}, providerExecuted: false }
]
},
{
role: "tool",
content: [
{ type: "tool-result", id: "1", name: "weather", isFailure: false, result: "Sunny, 22°C" }
]
},
{
role: "assistant",
content: [{ type: "text", text: "It's sunny and 22°C." }]
}
])
Type Guards
import * as Prompt from "@effect/ai/Prompt"
declare const value: unknown
if (Prompt.isPrompt(value)) {
// value: Prompt.Prompt
console.log(value.content)
}
if (Prompt.isMessage(value)) {
// value: Prompt.Message
console.log(value.role)
}
if (Prompt.isPart(value)) {
// value: Prompt.Part
console.log(value.type)
}
Anti-Patterns
// DON'T: Manually construct messages without constructors
const bad = {
role: "user",
content: [{ type: "text", text: "Hello" }]
} as Prompt.UserMessage
// DO: Use constructors
const good = Prompt.makeMessage("user", {
content: [Prompt.makePart("text", { text: "Hello" })]
})
// DO: Use shorthand constructors
const better = Prompt.userMessage({
content: [Prompt.makePart("text", { text: "Hello" })]
})
// DON'T: Mutate prompt content
const prompt = Prompt.make("Hi")
prompt.content.push(someMessage) // Error: readonly
// DO: Use merge for composition
const extended = Prompt.merge(prompt, "Additional message")
// DON'T: Manually filter response parts
const filtered = responseParts.filter(p => p.type === "text")
// DO: Use fromResponseParts (handles streaming deltas, tool results, etc.)
const historyPrompt = Prompt.fromResponseParts(responseParts)
Related Skills
- effect-ai-language-model - Using prompts with LanguageModel service
- effect-ai-streaming - Converting streaming responses to prompt history
- effect-ai-tool - Integrating tool call/result messages
Quality Checklist
- Messages use
Prompt.makeMessageor shorthand constructors - Parts use
Prompt.makePartconstructors - System messages managed with
setSystem/prependSystem/appendSystem - History updates use
Prompt.fromResponseParts - Prompt composition uses
Prompt.merge(not mutation) - Namespace imports for all @effect/ai modules