| name | documentation-writer |
| description | Activates when creating or improving technical documentation, READMEs, and API docs |
| version | 1.0.0 |
Documentation Writer
Overview
This skill specializes in creating clear, comprehensive, and well-structured technical documentation. It helps with READMEs, API documentation, user guides, and inline code comments.
Instructions
When creating or improving documentation:
- Identify Audience: Determine who will read this documentation (developers, end-users, etc.)
- Structure Content: Organize information logically with clear sections
- Be Clear and Concise: Use simple language and avoid jargon when possible
- Provide Examples: Include code examples and use cases
- Keep Updated: Ensure documentation matches current implementation
Documentation Elements
README Structure
- Project title and description
- Installation instructions
- Quick start guide
- Usage examples
- API reference (if applicable)
- Contributing guidelines
- License information
API Documentation
- Endpoint/function purpose
- Parameters with types and descriptions
- Return values
- Error handling
- Example requests and responses
Examples
Example 1: Function Documentation
Input:
def process_data(data, filter=None):
# Process the data
result = []
for item in data:
if filter and not filter(item):
continue
result.append(transform(item))
return result
Output:
def process_data(data, filter=None):
"""
Process and transform a collection of data items with optional filtering.
Args:
data (list): A list of items to process
filter (callable, optional): A function that returns True for items
to include. If None, all items are processed.
Returns:
list: A list of transformed items that passed the filter
Example:
>>> data = [1, 2, 3, 4, 5]
>>> process_data(data, filter=lambda x: x > 2)
[3, 4, 5]
"""
result = []
for item in data:
if filter and not filter(item):
continue
result.append(transform(item))
return result
Example 2: README Section
Input: Project is a web scraper
Output:
# Web Scraper Tool
A lightweight, efficient web scraping library for extracting structured data from websites.
## Features
- 🚀 Fast and asynchronous scraping
- 🛡️ Built-in rate limiting and error handling
- 📊 Export data to JSON, CSV, or databases
- 🔍 CSS and XPath selector support
## Installation
```bash
pip install web-scraper-tool
Quick Start
from scraper import WebScraper
# Initialize scraper
scraper = WebScraper()
# Scrape a website
data = scraper.scrape('https://example.com', {
'title': 'h1.title',
'price': '.price'
})
print(data)
Documentation
For detailed documentation, visit docs.example.com
## Notes
- Keep documentation up-to-date with code changes
- Use consistent formatting and style
- Include visual aids when helpful (diagrams, screenshots)
- Test all code examples to ensure they work
- Consider internationalization for broader audiences