Claude Code Plugins

Community-maintained marketplace

Feedback

mithril-cache-agent

@gar-ai/mallorn
1
0

Build mithril-cache for torch.compile caching. Use when implementing content-addressable storage, cache keys, eviction, or framework hooks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mithril-cache-agent
description Build mithril-cache for torch.compile caching. Use when implementing content-addressable storage, cache keys, eviction, or framework hooks.

Mithril Cache Agent

Build compilation caching to reduce torch.compile cold starts from 67s to <1s.

Status

Read crates/mithril-cache/STATUS.md for current progress.

Reference Documentation

  • cache/SPEC.md - Full product specification
  • RESEARCH.md - References (sccache, PyTorch codecache, Triton cache)

Module Responsibilities

cas (Content-Addressable Storage)

Store artifacts by content hash:

pub struct ContentStore {
    root: PathBuf,
    hasher: Blake3Hasher,
}

impl ContentStore {
    pub fn new(root: impl AsRef<Path>) -> Result<Self>;

    /// Store content, return its address (hash)
    pub async fn put(&self, content: &[u8]) -> Result<String>;

    /// Retrieve content by address
    pub async fn get(&self, address: &str) -> Result<Option<Vec<u8>>>;

    /// Check if address exists
    pub async fn exists(&self, address: &str) -> Result<bool>;
}

keys

Cache key generation (machine-independent):

pub struct CacheKey {
    pub graph_hash: [u8; 32],
    pub inputs: Vec<InputSpec>,
    pub device: DeviceClass,
}

impl CacheKey {
    pub fn to_storage_key(&self) -> String;
}

pub struct InputSpec {
    pub shape: Vec<i64>,
    pub dtype: DType,
}

pub enum DeviceClass {
    CudaAny,
    CudaCompute { major: u8, minor: u8 },
    Cpu,
}

eviction

LRU eviction for local cache:

pub struct LruCache {
    max_size_bytes: u64,
    entries: LinkedHashMap<String, CacheEntry>,
    current_size: u64,
}

impl LruCache {
    pub fn new(max_size_bytes: u64) -> Self;
    pub fn get(&mut self, key: &str) -> Option<&CacheEntry>;
    pub fn put(&mut self, key: String, entry: CacheEntry);
    fn evict_if_needed(&mut self);
}

hooks

Framework integration via environment variables:

pub fn init(config: CacheConfig) -> Result<CacheManager> {
    let manager = CacheManager::new(config)?;

    // Intercept via environment variables
    std::env::set_var("TORCHINDUCTOR_CACHE_DIR", manager.inductor_dir());
    std::env::set_var("TRITON_CACHE_DIR", manager.triton_dir());

    Ok(manager)
}

MVP Strategy: Don't hook internal PyTorch APIs. Just redirect cache directories.

Target Metrics

Metric Target
Local lookup <10ms
Cold start (cache hit) <1s
Cache hit rate ≥80%

Key Dependencies

mithril-core = { workspace = true }
blake3 = { workspace = true }
tokio = { workspace = true }

Testing

cargo test -p mithril-cache
cargo bench -p mithril-cache

Implementation Order

  1. Implement cas module (content-addressable storage)
  2. Implement keys module (cache key generation)
  3. Implement eviction (LRU)
  4. Implement hooks (env var interception)
  5. Integration test with synthetic data
  6. Update STATUS.md

Completion Criteria

  • CAS stores/retrieves artifacts correctly
  • LRU eviction works
  • <10ms local lookup
  • Unit tests pass
  • STATUS.md updated to COMPLETE

Notes

  • Don't integrate deeply with PyTorch internals - they're unstable
  • Start with env var interception (shallow integration)
  • Remote cache (S3/GCS) is post-MVP