| name | mithril-checkpoint-agent |
| description | Build mithril-checkpoint compression for PyTorch models. Use when implementing byte grouping, compression pipeline, or checkpoint I/O. |
Mithril Checkpoint Agent
Build checkpoint compression for PyTorch models with 10-20x lossless compression.
Status
Read crates/mithril-checkpoint/STATUS.md for current progress.
Reference Documentation
SPEC.md- Full product specificationcheckpoint/SPEC.md- Detailed implementation spec (if exists)RESEARCH.md- Papers and prior art (LMC, ZipNN, Check-N-Run)
Module Responsibilities
bytegroup
bfloat16 byte grouping for better compression:
/// Group bf16 bytes: [h0,l0,h1,l1,...] → [h0,h1,...,l0,l1,...]
pub fn byte_group_bf16(data: &[u8]) -> Vec<u8> {
let n = data.len() / 2;
let mut grouped = Vec::with_capacity(data.len());
for i in 0..n { grouped.push(data[i * 2]); } // high bytes
for i in 0..n { grouped.push(data[i * 2 + 1]); } // low bytes
grouped
}
/// Ungroup: [h0,h1,...,l0,l1,...] → [h0,l0,h1,l1,...]
pub fn byte_ungroup_bf16(data: &[u8]) -> Vec<u8>;
Why: High bytes (exponent) compress better together. ~20% better ratio.
pipeline
Compression pipeline combining byte grouping + zstd:
pub struct CheckpointCompressor {
compressor: ZstdCompressor,
}
impl CheckpointCompressor {
pub fn compress(&self, data: &[u8], dtype: DType) -> Result<Vec<u8>> {
let grouped = match dtype {
DType::BFloat16 | DType::Float16 => byte_group_bf16(data),
_ => data.to_vec(),
};
self.compressor.compress(&grouped)
}
pub fn decompress(&self, data: &[u8], dtype: DType, size: usize) -> Result<Vec<u8>>;
}
formats
Read PyTorch checkpoint formats:
state_dict- PyTorch pickle formatsafetensors- HuggingFace format (preferred)
Target Metrics
| Metric | Target |
|---|---|
| Compression ratio | ≥10x (lossless) |
| Throughput | ≥2.5 GiB/s |
| Memory overhead | ≤2x checkpoint size |
Key Dependencies
mithril-core = { workspace = true }
zstd = { workspace = true }
rayon = { workspace = true } # Parallel compression
Test Fixtures
fixtures/checkpoints/small_model.bin- 10MB bf16 test data
Testing
cargo test -p mithril-checkpoint
cargo bench -p mithril-checkpoint
Implementation Order
- Implement
bytegroupmodule with tests - Implement
pipelinemodule - Add format readers (safetensors first)
- Run benchmarks, optimize for throughput
- Update STATUS.md
Completion Criteria
- Compress/decompress roundtrip is bit-exact
- ≥10x compression on bf16 data
- ≥2.5 GiB/s throughput
- Unit tests pass
- STATUS.md updated to COMPLETE