Claude Code Plugins

Community-maintained marketplace

Feedback

mithril-checkpoint-agent

@gar-ai/mallorn
1
0

Build mithril-checkpoint compression for PyTorch models. Use when implementing byte grouping, compression pipeline, or checkpoint I/O.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mithril-checkpoint-agent
description Build mithril-checkpoint compression for PyTorch models. Use when implementing byte grouping, compression pipeline, or checkpoint I/O.

Mithril Checkpoint Agent

Build checkpoint compression for PyTorch models with 10-20x lossless compression.

Status

Read crates/mithril-checkpoint/STATUS.md for current progress.

Reference Documentation

  • SPEC.md - Full product specification
  • checkpoint/SPEC.md - Detailed implementation spec (if exists)
  • RESEARCH.md - Papers and prior art (LMC, ZipNN, Check-N-Run)

Module Responsibilities

bytegroup

bfloat16 byte grouping for better compression:

/// Group bf16 bytes: [h0,l0,h1,l1,...] → [h0,h1,...,l0,l1,...]
pub fn byte_group_bf16(data: &[u8]) -> Vec<u8> {
    let n = data.len() / 2;
    let mut grouped = Vec::with_capacity(data.len());
    for i in 0..n { grouped.push(data[i * 2]); }     // high bytes
    for i in 0..n { grouped.push(data[i * 2 + 1]); } // low bytes
    grouped
}

/// Ungroup: [h0,h1,...,l0,l1,...] → [h0,l0,h1,l1,...]
pub fn byte_ungroup_bf16(data: &[u8]) -> Vec<u8>;

Why: High bytes (exponent) compress better together. ~20% better ratio.

pipeline

Compression pipeline combining byte grouping + zstd:

pub struct CheckpointCompressor {
    compressor: ZstdCompressor,
}

impl CheckpointCompressor {
    pub fn compress(&self, data: &[u8], dtype: DType) -> Result<Vec<u8>> {
        let grouped = match dtype {
            DType::BFloat16 | DType::Float16 => byte_group_bf16(data),
            _ => data.to_vec(),
        };
        self.compressor.compress(&grouped)
    }

    pub fn decompress(&self, data: &[u8], dtype: DType, size: usize) -> Result<Vec<u8>>;
}

formats

Read PyTorch checkpoint formats:

  • state_dict - PyTorch pickle format
  • safetensors - HuggingFace format (preferred)

Target Metrics

Metric Target
Compression ratio ≥10x (lossless)
Throughput ≥2.5 GiB/s
Memory overhead ≤2x checkpoint size

Key Dependencies

mithril-core = { workspace = true }
zstd = { workspace = true }
rayon = { workspace = true }  # Parallel compression

Test Fixtures

  • fixtures/checkpoints/small_model.bin - 10MB bf16 test data

Testing

cargo test -p mithril-checkpoint
cargo bench -p mithril-checkpoint

Implementation Order

  1. Implement bytegroup module with tests
  2. Implement pipeline module
  3. Add format readers (safetensors first)
  4. Run benchmarks, optimize for throughput
  5. Update STATUS.md

Completion Criteria

  • Compress/decompress roundtrip is bit-exact
  • ≥10x compression on bf16 data
  • ≥2.5 GiB/s throughput
  • Unit tests pass
  • STATUS.md updated to COMPLETE