| name | langchain4j-tool-function-calling-patterns |
| description | Tool and function calling patterns with LangChain4j. Define tools, handle function calls, and integrate with LLM agents. Use when building agentic applications that interact with tools. |
| category | ai-development |
| tags | langchain4j, tools, function-calling, @Tool, ToolProvider, ToolExecutor, dynamic-tools, parameter-descriptions, java |
| version | 1.1.0 |
| allowed-tools | Read, Write, Bash, WebFetch |
LangChain4j Tool & Function Calling Patterns
Define tools and enable AI agents to interact with external systems, APIs, and services using LangChain4j's annotation-based and programmatic tool system.
When to Use This Skill
Use this skill when:
- Building AI applications that need to interact with external APIs and services
- Creating AI assistants that can perform actions beyond text generation
- Implementing AI systems that need access to real-time data (weather, stocks, etc.)
- Building multi-agent systems where agents can use specialized tools
- Creating AI applications with database read/write capabilities
- Implementing AI systems that need to integrate with existing business systems
- Building context-aware AI applications where tool availability depends on user state
- Developing production AI applications that require robust error handling and monitoring
Setup and Configuration
Basic Tool Registration
// Define tools using @Tool annotation
public class CalculatorTools {
@Tool("Add two numbers")
public double add(double a, double b) {
return a + b;
}
}
// Register with AiServices builder
interface MathAssistant {
String ask(String question);
}
MathAssistant assistant = AiServices.builder(MathAssistant.class)
.chatModel(chatModel)
.tools(new CalculatorTools())
.build();
Builder Configuration Options
AiServices.builder(AssistantInterface.class)
// Static tool registration
.tools(new Calculator(), new WeatherService())
// Dynamic tool provider
.toolProvider(new DynamicToolProvider())
// Concurrent execution
.executeToolsConcurrently()
// Error handling
.toolExecutionErrorHandler((request, exception) -> {
return "Error: " + exception.getMessage();
})
// Memory for context
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(20))
.build();
Core Patterns
Basic Tool Definition
Use @Tool annotation to define methods as executable tools:
public class BasicTools {
@Tool("Add two numbers")
public int add(@P("first number") int a, @P("second number") int b) {
return a + b;
}
@Tool("Get greeting")
public String greet(@P("name to greet") String name) {
return "Hello, " + name + "!";
}
}
Parameter Descriptions and Validation
Provide clear parameter descriptions using @P annotation:
public class WeatherService {
@Tool("Get current weather conditions")
public String getCurrentWeather(
@P("City name or coordinates") String location,
@P("Temperature unit (celsius, fahrenheit)", required = false) String unit) {
// Implementation with validation
if (location == null || location.trim().isEmpty()) {
return "Location is required";
}
return weatherClient.getCurrentWeather(location, unit);
}
}
Complex Parameter Types
Use Java records and descriptions for complex objects:
public class OrderService {
@Description("Customer order information")
public record OrderRequest(
@Description("Customer ID") String customerId,
@Description("List of items") List<OrderItem> items,
@JsonProperty(required = false) @Description("Delivery instructions") String instructions
) {}
@Tool("Create customer order")
public String createOrder(OrderRequest order) {
return orderService.processOrder(order);
}
}
Advanced Features
Memory Context Integration
Access user context using @ToolMemoryId:
public class PersonalizedTools {
@Tool("Get user preferences")
public String getPreferences(
@ToolMemoryId String userId,
@P("Preference category") String category) {
return preferenceService.getPreferences(userId, category);
}
}
Dynamic Tool Provisioning
Create tools that change based on context:
public class ContextAwareToolProvider implements ToolProvider {
@Override
public ToolProviderResult provideTools(ToolProviderRequest request) {
String message = request.userMessage().singleText().toLowerCase();
var builder = ToolProviderResult.builder();
if (message.contains("weather")) {
builder.add(weatherToolSpec, weatherExecutor);
}
if (message.contains("calculate")) {
builder.add(calcToolSpec, calcExecutor);
}
return builder.build();
}
}
Immediate Return Tools
Return results immediately without full AI response:
public class QuickTools {
@Tool(value = "Get current time", returnBehavior = ReturnBehavior.IMMEDIATE)
public String getCurrentTime() {
return LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME);
}
}
Error Handling
Tool Error Handling
Handle tool execution errors gracefully:
AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(new ExternalServiceTools())
.toolExecutionErrorHandler((request, exception) -> {
if (exception instanceof ApiException) {
return "Service temporarily unavailable: " + exception.getMessage();
}
return "An error occurred while processing your request";
})
.build();
Resilience Patterns
Implement circuit breakers and retries:
public class ResilientService {
private final CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("external-api");
@Tool("Get external data")
public String getExternalData(@P("Data identifier") String id) {
return circuitBreaker.executeSupplier(() -> {
return externalApi.getData(id);
});
}
}
Integration Examples
Multi-Domain Tool Service
@Service
public class MultiDomainToolService {
public String processRequest(String userId, String request, String domain) {
String contextualRequest = String.format("[Domain: %s] %s", domain, request);
Result<String> result = assistant.chat(userId, contextualRequest);
// Log tool usage
result.toolExecutions().forEach(execution ->
analyticsService.recordToolUsage(userId, domain, execution.request().name()));
return result.content();
}
}
Streaming with Tool Execution
interface StreamingAssistant {
TokenStream chat(String message);
}
StreamingAssistant assistant = AiServices.builder(StreamingAssistant.class)
.streamingChatModel(streamingChatModel)
.tools(new Tools())
.build();
TokenStream stream = assistant.chat("What's the weather and calculate 15*8?");
stream
.onToolExecuted(execution ->
System.out.println("Executed: " + execution.request().name()))
.onPartialResponse(System.out::print)
.onComplete(response -> System.out.println("Complete!"))
.start();
Best Practices
Tool Design Guidelines
- Descriptive Names: Use clear, actionable tool names
- Parameter Validation: Validate inputs before processing
- Error Messages: Provide meaningful error messages
- Return Types: Use appropriate return types that LLMs can understand
- Performance: Avoid blocking operations in tools
Security Considerations
- Permission Checks: Validate user permissions before tool execution
- Input Sanitization: Sanitize all tool inputs
- Audit Logging: Log tool usage for security monitoring
- Rate Limiting: Implement rate limiting for external APIs
Performance Optimization
- Concurrent Execution: Use
executeToolsConcurrently()for independent tools - Caching: Cache frequently accessed data
- Monitoring: Monitor tool performance and error rates
- Resource Management: Handle external service timeouts gracefully
Reference Documentation
For detailed API reference, examples, and advanced patterns, see:
- API Reference - Complete API documentation
- Implementation Patterns - Advanced implementation examples
- Examples - Practical usage examples
Common Issues and Solutions
Tool Not Found
Problem: LLM calls tools that don't exist
Solution: Implement hallucination handler:
.hallucinatedToolNameStrategy(request -> {
return ToolExecutionResultMessage.from(request,
"Error: Tool '" + request.name() + "' does not exist");
})
Parameter Validation Errors
Problem: Tools receive invalid parameters
Solution: Add input validation and error handlers:
.toolArgumentsErrorHandler((error, context) -> {
return ToolErrorHandlerResult.text("Invalid arguments: " + error.getMessage());
})
Performance Issues
Problem: Tools are slow or timeout
Solution: Use concurrent execution and resilience patterns:
.executeToolsConcurrently(Executors.newFixedThreadPool(5))
.toolExecutionTimeout(Duration.ofSeconds(30))
Related Skills
langchain4j-ai-services-patternslangchain4j-rag-implementation-patternslangchain4j-spring-boot-integration