| name | llm-cli |
| description | Process textual and multimedia files with various LLM providers using the llm CLI. Supports both non-interactive and interactive modes with model selection, config persistence, and file input handling. |
LLM CLI Skill
Purpose
This skill enables seamless interaction with multiple LLM providers (OpenAI, Anthropic, Google Gemini, Ollama) through the llm CLI tool. It processes textual and multimedia information with support for both one-off executions and interactive conversation modes.
When to Use This Skill
Trigger this skill when:
- User wants to process text/files with an LLM
- User needs to choose between multiple available LLMs
- User wants interactive conversation with an LLM
- User needs to pipe content through an LLM for processing
- User wants to use specific model aliases (e.g., "claude-opus", "gpt-4o")
Example user requests:
- "Process this file with Claude"
- "Analyze this text with the fastest available model"
- "Start an interactive chat with OpenAI"
- "Use Gemini to summarize this document"
- "Chat mode with my local Ollama instance"
Supported Providers & Models
OpenAI
- Latest Models (2025):
gpt-5- Most advanced modelgpt-4-1/gpt-4.1- Latest high-performancegpt-4-1-mini/gpt-4.1-mini- Smaller, faster versiongpt-4o- Multimodal omni modelgpt-4o-mini- Lightweight multimodalo3- Advanced reasoningo3-mini/o3-mini-high- Reasoning variants
Aliases: openai, gpt
Anthropic
- Latest Models (2025):
claude-sonnet-4.5- Latest flagship modelclaude-opus-4.1- Complex task specialistclaude-opus-4- Coding specialistclaude-sonnet-4- Balanced performanceclaude-3.5-sonnet- Previous generationclaude-3.5-haiku- Fast & efficient
Aliases: anthropic, claude
Google Gemini
- Latest Models (2025):
gemini-2.5-pro- Most advancedgemini-2.5-flash- Default fast modelgemini-2.5-flash-lite- Speed optimizedgemini-2.0-flash- Previous generationgemini-2.5-computer-use- UI interaction
Aliases: google, gemini
Ollama (Local)
- Popular Models:
llama3.1- Meta's latest (8b, 70b, 405b)llama3.2- Compact versions (1b, 3b)mistral-large-2- Mistral flagshipdeepseek-coder- Code specialiststarcode2- Code models
Aliases: ollama, local
Workflow Overview
User Input (with optional model)
↓
Check Available Providers (env vars)
↓
Determine Model to Use:
- If specified: Use provided model
- If ambiguous: Show selection menu
- Otherwise: Use last remembered choice
↓
Load/Create Config (~/.claude/llm-skill-config.json)
↓
Detect Input Type:
- stdin/piped
- file path
- inline text
↓
Execute llm CLI:
- Non-interactive: Process & return
- Interactive: Keep conversation loop
↓
Save Model Choice to Config
Features
1. Provider Detection
- Checks environment variables for API keys
- Suggests available LLM providers on first run
- Detects:
OPENAI_API_KEY,ANTHROPIC_API_KEY,GOOGLE_API_KEY,OLLAMA_BASE_URL
2. Model Selection
- Accept model aliases (
gpt-4o,claude-opus,gemini-2.5-pro) - Accept provider aliases (
openai,anthropic,google,ollama) - Interactive menu when selection is ambiguous
- Remembers last used model in
~/.claude/llm-skill-config.json
3. Input Processing
- Accepts stdin/piped input
- Processes file paths (detects: .txt, .md, .json, .pdf, images)
- Handles inline text prompts
- Supports multimedia files with appropriate encoding
4. Execution Modes
Non-Interactive (Default)
llm "Your prompt here"
llm --model gpt-4o "Process this text"
llm < file.txt
cat document.md | llm "Summarize"
Interactive Mode
llm --interactive
llm -i
llm --model claude-opus --interactive
5. Configuration
Persistent config location: ~/.claude/llm-skill-config.json
{
"last_model": "claude-sonnet-4.5",
"default_provider": "anthropic",
"available_providers": ["openai", "anthropic", "google", "ollama"]
}
Implementation Details
Core Files
llm_skill.py- Main skill orchestrationproviders.py- Provider detection & configmodels.py- Model definitions & aliasesexecutor.py- Execution logic (interactive/non-interactive)input_handler.py- Input type detection
Key Functions
detect_providers()
- Scans environment for provider API keys
- Returns dict of available providers
get_model_selector(input_text, provider=None)
- Returns selected model, showing menu if needed
- Respects
last_modelconfig preference
load_input(input_source)
- Handles stdin, file paths, or inline text
- Returns content string
execute_llm(content, model, interactive=False)
- Calls
llmCLI with appropriate parameters - Manages stdin/stdout for interactive mode
Usage in Claude Code
When user invokes this skill, Claude should:
- Parse input for model specification (e.g.,
--model gpt-4o) - Call skill with content and optional model parameter
- Wait for provider/model selection if needed
- Execute and return results
- For interactive mode, maintain conversation loop
Error Handling
- If no providers available: Suggest installing API keys
- If model not found: Show available models for chosen provider
- If llm CLI not installed: Suggest installation via
pip install llm - If file not readable: Fall back to treating as inline text
Configuration
Users can pre-configure preferences:
{
"last_model": "claude-sonnet-4.5",
"default_provider": "anthropic",
"interactive_mode": false,
"available_providers": ["openai", "anthropic"]
}
Slash Command Integration
Support /llm command:
/llm process this text
/llm --interactive
/llm --model gpt-4o analyze this