Claude Code Plugins

Community-maintained marketplace

Feedback

executing-hms-runs

@gpt-cmdr/hms-commander
1
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name executing-hms-runs
description Executes HEC-HMS simulations using HmsCmdr.compute_run(), handles parallel execution across multiple runs, and manages Jython script generation. Use when running HMS simulations, executing runs, computing models, or setting up parallel computation workflows. Handles HMS 3.x and 4.x version differences, Python 2/3 compatibility, destination folder management, and multi-run coordination. Trigger keywords: run simulation, execute HMS, compute run, parallel execution, batch runs, Jython script, HMS 3.x, HMS 4.x, Python 2 compatible.

Executing HEC-HMS Runs

Quick Start

from hms_commander import init_hms_project, HmsCmdr

# Initialize project
init_hms_project(r"C:\Projects\watershed")

# Execute single run
HmsCmdr.compute_run("Run 1")

# Execute multiple runs in parallel
HmsCmdr.compute_parallel(["Run 1", "Run 2", "Run 3"], max_workers=2)

Primary Sources

Code (Authoritative API):

  • hms_commander/HmsCmdr.py - Execution engine with complete docstrings
  • hms_commander/HmsJython.py - Script generation and version detection

Examples (Working Demonstrations):

  • examples/01_multi_version_execution.ipynb - Complete workflow
  • examples/04_hms_workflow.ipynb - End-to-end simulation

Rules (Patterns & Decisions):

  • .claude/rules/hec-hms/execution.md - Execution patterns
  • .claude/rules/hec-hms/version-support.md - HMS 3.x vs 4.x differences

When to Use This Skill

Trigger Scenarios:

  • User says "run HMS simulation"
  • User says "execute this model"
  • User says "compute all runs in parallel"
  • User mentions "Jython script"
  • Working with HMS 3.x (requires Python 2 compatibility)
  • Need to execute batch simulations
  • Setting up automated workflows

Core Capabilities

1. Single Run Execution

Pattern: Initialize → Compute → Verify

See reference/compute_run.md for complete API details.

Key Decision: When to use compute_run() vs compute_test_mode()

  • Use compute_run() for actual simulation
  • Use compute_test_mode() to validate setup without running

2. Parallel Execution

Pattern: Batch runs across multiple workers

See reference/parallel.md for parallel execution strategies.

Key Decision: How many workers?

  • Default: 2 workers (safe for most systems)
  • CPU-bound: Use os.cpu_count() - 1
  • Memory-constrained: Use 1 worker (sequential)
  • Large models: Consider memory per run × workers

3. Jython Script Generation

Pattern: Generate version-appropriate script → Execute via HMS

See reference/jython.md for script generation details.

Critical Decision: HMS 3.x vs 4.x

  • HMS 3.x: MUST use python2_compatible=True
  • HMS 4.x: Use default (Python 3 syntax)
  • Auto-detection: Check install path contains "(x86)" = 3.x

HMS Version Awareness

This skill handles BOTH HMS 3.x and 4.x:

Aspect HMS 3.x HMS 4.x
Architecture 32-bit 64-bit
Python Syntax Python 2 (print "x") Python 3 (print("x"))
Script Flag python2_compatible=True Default
Max Memory ~1.3 GB 32+ GB
Install Path Program Files (x86) Program Files

See: .claude/rules/hec-hms/version-support.md for complete differences

Common Workflows

Workflow 1: Basic Execution

from hms_commander import init_hms_project, HmsCmdr

init_hms_project(r"C:\Projects\watershed")
HmsCmdr.compute_run("Run 1")

See: examples/basic-run.md for complete walkthrough

Workflow 2: Batch Execution (Sequential)

runs = ["Baseline", "Alternative_1", "Alternative_2"]
HmsCmdr.compute_batch(runs)

See: examples/batch-runs.md for batch strategies

Workflow 3: Parallel Execution

runs = ["Run_1", "Run_2", "Run_3", "Run_4"]
HmsCmdr.compute_parallel(runs, max_workers=2)

See: reference/parallel.md for worker allocation

Workflow 4: Legacy HMS 3.x Project

from hms_commander import HmsJython

# Generate Python 2 compatible script
script = HmsJython.generate_compute_script(
    project_path=r"C:\Projects\old_project",
    run_name="Run 1",
    python2_compatible=True  # CRITICAL for HMS 3.x!
)

# Execute with HMS 3.x
success, stdout, stderr = HmsJython.execute_script(
    script_content=script,
    hms_exe_path=r"C:\Program Files (x86)\HEC\HEC-HMS\3.5"
)

See: .claude/rules/hec-hms/version-support.md for legacy workflows

Troubleshooting

Common Issues:

  1. HMS Not Found: See reference/jython.md#finding-hms
  2. Memory Errors: See reference/jython.md#memory-allocation
  3. Python 2 Syntax Errors: See .claude/rules/hec-hms/version-support.md
  4. Parallel Execution Hangs: See reference/parallel.md#debugging

Integration Points

Before Execution:

  • Use HmsBasin to modify parameters (see parsing-basin-models skill)
  • Use HmsMet to update precipitation (see updating-met-models skill)
  • Use HmsControl to set time window (see .claude/rules/hec-hms/control-files.md)

After Execution:

  • Use HmsDss to extract results (see extracting-dss-results skill)
  • Use HmsResults for analysis (see .claude/rules/hec-hms/dss-operations.md)

Reference Files

Detailed API Documentation (load on-demand):

  • reference/compute_run.md - HmsCmdr.compute_run() complete API
  • reference/parallel.md - Parallel execution strategies
  • reference/jython.md - Script generation and execution
  • reference/troubleshooting.md - Common issues and solutions

Complete Examples (working code):

  • examples/basic-run.md - Simple single run
  • examples/batch-runs.md - Sequential batch execution
  • examples/parallel-runs.md - Parallel execution with worker allocation
  • examples/legacy-3x.md - HMS 3.x compatibility

Testing This Skill

Use real HMS projects for testing:

from hms_commander import HmsExamples

# Extract example project
HmsExamples.extract_project("tifton")

# Test execution
init_hms_project("tifton/tifton")
HmsCmdr.compute_run("1970_simulation")

See: .claude/rules/testing/tdd-approach.md for testing philosophy

Key Patterns (Not in Primary Sources)

Pattern 1: Destination Folder Management

HMS creates output in the project folder. For organized results:

# Results go to project_folder/results/RUN_<run_name>.results
# DSS file location specified in .run file

Decision: HMS writes to project folder, not a separate destination folder like RAS.

Pattern 2: Version Auto-Detection

from pathlib import Path

hms_path = Path(r"C:\Program Files (x86)\HEC\HEC-HMS\3.5")
is_3x = "(x86)" in str(hms_path)  # 32-bit = HMS 3.x
python2_compatible = is_3x

Decision: Use install path pattern for version detection, not HMS version file.

Pattern 3: Error Handling

try:
    HmsCmdr.compute_run("Run 1")
except Exception as e:
    # Check HMS log file for details
    log_file = hms.project_folder / f"RUN_Run 1.log"
    if log_file.exists():
        print(log_file.read_text())
    raise

Decision: HMS errors appear in log files, check those for diagnostics.

Related Skills

  • parsing-basin-models - Modify parameters before execution
  • updating-met-models - Update precipitation before execution
  • extracting-dss-results - Process outputs after execution
  • cloning-hms-components - Create QAQC comparison runs
  • managing-hms-versions - Multi-version testing workflows

Navigation: This skill points to primary sources. For complete API details, read the code docstrings in hms_commander/HmsCmdr.py and hms_commander/HmsJython.py.