| name | output-dev-types-file |
| description | Create types.ts files with Zod schemas for Output SDK workflows. Use when defining input/output schemas, creating type definitions, or fixing schema-related errors. |
| allowed-tools | Read, Write, Edit |
Creating types.ts Files with Zod Schemas
Overview
This skill documents how to create types.ts files for Output SDK workflows. These files contain Zod schemas for input/output validation and their corresponding TypeScript types.
When to Use This Skill
- Creating a new workflow's type definitions
- Adding new schemas for steps
- Fixing schema validation errors
- Refactoring existing type definitions
Critical Import Rule
ALWAYS import z from @output.ai/core, NEVER from zod directly:
// CORRECT
import { z } from '@output.ai/core';
// WRONG - will cause runtime errors
import { z } from 'zod';
Related Skill: output-error-zod-import for troubleshooting import issues
Basic Structure
import { z } from '@output.ai/core';
// 1. Workflow Input Schema
export const WorkflowInputSchema = z.object({
// Define input fields
});
// 2. Workflow Output Type
export type WorkflowInput = z.infer<typeof WorkflowInputSchema>;
export type WorkflowOutput = /* output type */;
// 3. Step Schemas (for each step)
export const StepNameInputSchema = z.object({
// Step input fields
});
export const StepNameOutputSchema = z.object({
// Step output fields
});
// 4. Type Exports
export type StepNameInput = z.infer<typeof StepNameInputSchema>;
export type StepNameOutput = z.infer<typeof StepNameOutputSchema>;
Common Schema Patterns
Basic Types
import { z } from '@output.ai/core';
// Strings
const stringField = z.string();
const optionalString = z.string().optional();
const stringWithDefault = z.string().default('default value');
const describedString = z.string().describe('Field description');
// Numbers
const numberField = z.number();
const integerField = z.number().int();
const rangedNumber = z.number().min(1).max(100);
// Booleans
const booleanField = z.boolean();
const defaultBoolean = z.boolean().default(false);
// Enums
const enumField = z.enum(['option1', 'option2', 'option3']);
const enumWithDefault = z.enum(['small', 'medium', 'large']).default('medium');
Complex Types
import { z } from '@output.ai/core';
// Arrays
const stringArray = z.array(z.string());
const objectArray = z.array(z.object({ id: z.string(), name: z.string() }));
// Objects
const nestedObject = z.object({
user: z.object({
id: z.string(),
email: z.string().email()
}),
settings: z.object({
notifications: z.boolean()
})
});
// Union Types
const flexibleInput = z.union([
z.string(),
z.array(z.string())
]);
// Records
const keyValueMap = z.record(z.string(), z.number());
Validation Patterns
import { z } from '@output.ai/core';
// String Validations
const emailField = z.string().email();
const urlField = z.string().url();
const uuidField = z.string().uuid();
const minLengthString = z.string().min(1);
const maxLengthString = z.string().max(1000);
// Number Validations
const positiveNumber = z.number().positive();
const nonNegativeNumber = z.number().nonnegative();
const percentageNumber = z.number().min(0).max(100);
// Array Validations
const nonEmptyArray = z.array(z.string()).min(1);
const limitedArray = z.array(z.string()).max(10);
Complete Example
Based on a real workflow (image_infographic_nano):
import { z } from '@output.ai/core';
// ============================================
// Workflow Schemas
// ============================================
export const WorkflowInputSchema = z.object({
content: z.string().describe('Text content to generate image ideas from'),
mode: z.enum(['infographic']).default('infographic').describe('Type of image to generate'),
colorPalette: z.string().optional().describe('Color palette preference for the images'),
artDirection: z.string().optional().describe('Art direction or style preference'),
numberOfIdeas: z.number().min(1).max(10).default(1).describe('Number of image concepts to generate'),
referenceImageUrls: z.union([
z.string(),
z.array(z.string())
]).optional().describe('Reference image URLs for style guidance (max 14)'),
aspectRatio: z.enum(['1:1', '16:9', '9:16', '4:3', '3:4']).default('1:1').describe('Aspect ratio for generated images'),
resolution: z.enum(['1K', '2K', '4K']).default('1K').describe('Resolution for generated images'),
numberOfGenerations: z.number().min(1).max(10).default(1).describe('Number of images to generate per concept'),
storageNamespace: z.string().optional().describe('S3 folder path for storing images')
});
export type WorkflowInput = z.infer<typeof WorkflowInputSchema>;
export type WorkflowOutput = string[];
// ============================================
// Step Schemas
// ============================================
export const ValidateReferenceImagesInputSchema = z.object({
referenceImageUrls: z.array(z.string()).optional()
});
export const GenerateImageIdeasInputSchema = z.object({
content: z.string(),
numberOfIdeas: z.number(),
colorPalette: z.string().optional(),
artDirection: z.string().optional()
});
export const GenerateImagesInputSchema = z.object({
input: z.object({
referenceImageUrls: z.union([z.string(), z.array(z.string())]).optional(),
aspectRatio: z.enum(['1:1', '16:9', '9:16', '4:3', '3:4']),
resolution: z.enum(['1K', '2K', '4K']),
numberOfGenerations: z.number(),
storageNamespace: z.string().optional()
}),
prompt: z.string()
});
// Schema for LLM response validation
export const ImageIdeasSchema = z.object({
ideas: z.array(z.string()).describe('Array of detailed image prompts for Gemini')
});
// ============================================
// Type Exports
// ============================================
export type ValidateReferenceImagesInput = z.infer<typeof ValidateReferenceImagesInputSchema>;
export type GenerateImageIdeasInput = z.infer<typeof GenerateImageIdeasInputSchema>;
export type GenerateImagesInput = z.infer<typeof GenerateImagesInputSchema>;
export type ImageIdeas = z.infer<typeof ImageIdeasSchema>;
Best Practices
1. Use Descriptive Field Descriptions
// Good - helps with documentation and error messages
z.string().describe('User email address for notifications')
// Avoid - no context for errors
z.string()
2. Provide Sensible Defaults
// Good - workflow works without optional fields
numberOfIdeas: z.number().min(1).max(10).default(1)
// Avoid - forces users to provide every field
numberOfIdeas: z.number().min(1).max(10)
3. Separate Workflow and Step Schemas
// Workflow input schema (what the user provides)
export const WorkflowInputSchema = z.object({ ... });
// Step schemas (internal data shapes)
export const StepNameInputSchema = z.object({ ... });
4. Export Both Schemas and Types
// Export schema for runtime validation
export const UserSchema = z.object({ ... });
// Export type for TypeScript type checking
export type User = z.infer<typeof UserSchema>;
Verification Checklist
-
zis imported from@output.ai/core - WorkflowInputSchema is defined and exported
- WorkflowInput type is exported
- WorkflowOutput type is defined
- Each step has corresponding input/output schemas
- All schemas have
.describe()for important fields - Optional fields use
.optional()or.default() - Numeric fields have appropriate min/max constraints
Related Skills
output-dev-workflow-function- Using schemas in workflow definitionsoutput-dev-step-function- Using schemas in step definitionsoutput-dev-folder-structure- Where types.ts belongs in the projectoutput-error-zod-import- Troubleshooting schema import issues