| name | Directus AI Assistant Integration |
| description | Build AI-powered features in Directus: chat interfaces, content generation, smart suggestions, and copilot functionality |
| version | 1.0.0 |
| author | Directus Development System |
| tags | directus, ai, openai, anthropic, chat, assistant, websocket, real-time, rag |
Directus AI Assistant Integration
Overview
This skill provides comprehensive guidance for integrating AI assistants into Directus applications. Build intelligent chat interfaces, content generation systems, context-aware suggestions, and copilot features using OpenAI, Anthropic Claude, and other AI providers. Implement real-time communication, vector search, RAG (Retrieval Augmented Generation), and natural language interfaces.
When to Use This Skill
- Building AI chat interfaces in Directus panels
- Implementing content generation workflows
- Creating smart autocomplete and suggestions
- Adding natural language query interfaces
- Building AI-powered content moderation
- Implementing semantic search with embeddings
- Creating AI copilot features for users
- Setting up RAG systems with vector databases
- Building conversational interfaces
- Implementing AI-driven automation
Architecture Overview
AI Integration Stack
┌─────────────────────────────────────┐
│ Directus Frontend │
│ (Vue 3 Chat Components) │
└────────────┬────────────────────────┘
│ WebSocket / REST
┌────────────▼────────────────────────┐
│ Directus Backend │
│ (AI Service Layer) │
├─────────────────────────────────────┤
│ • Request Queue │
│ • Context Management │
│ • Token Optimization │
│ • Response Streaming │
└────────────┬────────────────────────┘
│
┌────────────▼────────────────────────┐
│ AI Providers │
├─────────────────────────────────────┤
│ • OpenAI (GPT-4, Embeddings) │
│ • Anthropic (Claude) │
│ • Cohere (Reranking) │
│ • Hugging Face (Open Models) │
└─────────────────────────────────────┘
│
┌────────────▼────────────────────────┐
│ Vector Database │
│ (Pinecone/Weaviate/pgvector) │
└─────────────────────────────────────┘
Process: Building AI Chat Interface
Step 1: Create Chat Panel Extension
<!-- src/ai-chat-panel.vue -->
<template>
<div class="ai-chat-panel">
<div class="chat-header">
<div class="chat-title">
<v-icon name="smart_toy" />
<span>AI Assistant</span>
</div>
<div class="chat-actions">
<v-button
v-tooltip="'Clear conversation'"
icon
x-small
@click="clearChat"
>
<v-icon name="clear_all" />
</v-button>
<v-button
v-tooltip="'Export conversation'"
icon
x-small
@click="exportChat"
>
<v-icon name="download" />
</v-button>
</div>
</div>
<div class="chat-messages" ref="messagesContainer">
<transition-group name="message-fade">
<div
v-for="message in messages"
:key="message.id"
class="message"
:class="message.role"
>
<div class="message-avatar">
<v-icon
:name="message.role === 'user' ? 'person' : 'smart_toy'"
/>
</div>
<div class="message-content">
<div class="message-text" v-html="renderMarkdown(message.content)"></div>
<div class="message-metadata">
<span class="message-time">{{ formatTime(message.timestamp) }}</span>
<span v-if="message.tokens" class="message-tokens">
{{ message.tokens }} tokens
</span>
</div>
<div v-if="message.suggestions" class="message-suggestions">
<v-chip
v-for="suggestion in message.suggestions"
:key="suggestion"
clickable
@click="sendMessage(suggestion)"
>
{{ suggestion }}
</v-chip>
</div>
</div>
</div>
</transition-group>
<div v-if="isTyping" class="typing-indicator">
<span></span>
<span></span>
<span></span>
</div>
<div v-if="streamingResponse" class="streaming-message">
<div class="message-content">
<div class="message-text" v-html="renderMarkdown(streamingResponse)"></div>
</div>
</div>
</div>
<div class="chat-input">
<div class="input-container">
<v-textarea
v-model="inputMessage"
placeholder="Type your message..."
:disabled="isProcessing"
@keydown.enter.prevent="handleEnter"
auto-grow
:rows="1"
:max-rows="4"
/>
<div class="input-actions">
<v-menu placement="top">
<template #activator="{ toggle }">
<v-button
v-tooltip="'Add context'"
icon
x-small
@click="toggle"
>
<v-icon name="attach_file" />
</v-button>
</template>
<v-list>
<v-list-item
v-for="ctx in contextOptions"
:key="ctx.value"
clickable
@click="addContext(ctx)"
>
<v-list-item-icon>
<v-icon :name="ctx.icon" />
</v-list-item-icon>
<v-list-item-content>{{ ctx.label }}</v-list-item-content>
</v-list-item>
</v-list>
</v-menu>
<v-button
v-tooltip="'Voice input'"
icon
x-small
@click="startVoiceInput"
:disabled="!speechRecognitionSupported"
>
<v-icon :name="isRecording ? 'mic' : 'mic_none'" />
</v-button>
</div>
</div>
<v-button
@click="sendMessage()"
:loading="isProcessing"
:disabled="!inputMessage.trim()"
icon
>
<v-icon name="send" />
</v-button>
</div>
<div v-if="activeContext.length > 0" class="context-display">
<div class="context-header">Active Context:</div>
<div class="context-items">
<v-chip
v-for="(ctx, index) in activeContext"
:key="index"
closable
@close="removeContext(index)"
>
<v-icon :name="ctx.icon" x-small />
{{ ctx.label }}
</v-chip>
</div>
</div>
</div>
</template>
<script setup lang="ts">
import { ref, computed, onMounted, onUnmounted, nextTick, watch } from 'vue';
import { useApi, useStores } from '@directus/extensions-sdk';
import { marked } from 'marked';
import DOMPurify from 'dompurify';
import { io, Socket } from 'socket.io-client';
interface Message {
id: string;
role: 'user' | 'assistant' | 'system';
content: string;
timestamp: Date;
tokens?: number;
suggestions?: string[];
context?: any[];
}
interface Props {
collection?: string;
systemPrompt?: string;
model?: string;
maxTokens?: number;
temperature?: number;
}
const props = withDefaults(defineProps<Props>(), {
model: 'gpt-4-turbo-preview',
maxTokens: 2000,
temperature: 0.7,
});
// Composables
const api = useApi();
const { useItemsStore, useCollectionsStore } = useStores();
// State
const messages = ref<Message[]>([]);
const inputMessage = ref('');
const isProcessing = ref(false);
const isTyping = ref(false);
const streamingResponse = ref('');
const messagesContainer = ref<HTMLElement>();
const activeContext = ref<any[]>([]);
const socket = ref<Socket | null>(null);
const isRecording = ref(false);
const speechRecognition = ref<any>(null);
// Computed
const speechRecognitionSupported = computed(() => {
return 'webkitSpeechRecognition' in window || 'SpeechRecognition' in window;
});
const contextOptions = computed(() => [
{ label: 'Current Collection', value: 'collection', icon: 'folder' },
{ label: 'Selected Items', value: 'items', icon: 'check_box' },
{ label: 'Current View', value: 'view', icon: 'visibility' },
{ label: 'User Profile', value: 'profile', icon: 'person' },
{ label: 'Schema Info', value: 'schema', icon: 'schema' },
]);
// WebSocket Setup
function initializeWebSocket() {
const baseURL = api.defaults.baseURL || window.location.origin;
socket.value = io(baseURL, {
path: '/ai/socket',
transports: ['websocket'],
auth: {
access_token: api.defaults.headers.common['Authorization']?.replace('Bearer ', ''),
},
});
socket.value.on('connect', () => {
console.log('AI WebSocket connected');
});
socket.value.on('ai:response', handleStreamingResponse);
socket.value.on('ai:complete', handleResponseComplete);
socket.value.on('ai:error', handleResponseError);
socket.value.on('ai:typing', () => {
isTyping.value = true;
});
}
// Message Handling
async function sendMessage(content?: string) {
const messageContent = content || inputMessage.value.trim();
if (!messageContent || isProcessing.value) return;
isProcessing.value = true;
inputMessage.value = '';
// Add user message
const userMessage: Message = {
id: generateId(),
role: 'user',
content: messageContent,
timestamp: new Date(),
context: [...activeContext.value],
};
messages.value.push(userMessage);
scrollToBottom();
try {
// Prepare context
const context = await prepareContext();
// Send via WebSocket for streaming
if (socket.value?.connected) {
socket.value.emit('ai:message', {
message: messageContent,
context,
history: messages.value.slice(-10), // Last 10 messages
config: {
model: props.model,
maxTokens: props.maxTokens,
temperature: props.temperature,
systemPrompt: props.systemPrompt,
},
});
isTyping.value = true;
streamingResponse.value = '';
} else {
// Fallback to REST API
const response = await api.post('/ai/chat', {
message: messageContent,
context,
history: messages.value.slice(-10),
config: {
model: props.model,
maxTokens: props.maxTokens,
temperature: props.temperature,
},
});
handleResponseComplete(response.data);
}
} catch (error) {
console.error('Error sending message:', error);
handleResponseError({ error: 'Failed to send message' });
}
}
function handleStreamingResponse(data: { chunk: string; tokens?: number }) {
isTyping.value = false;
streamingResponse.value += data.chunk;
scrollToBottom();
}
function handleResponseComplete(data: any) {
isTyping.value = false;
const assistantMessage: Message = {
id: generateId(),
role: 'assistant',
content: streamingResponse.value || data.content,
timestamp: new Date(),
tokens: data.tokens,
suggestions: data.suggestions,
};
messages.value.push(assistantMessage);
streamingResponse.value = '';
isProcessing.value = false;
scrollToBottom();
// Store conversation
storeConversation();
}
function handleResponseError(data: { error: string }) {
isTyping.value = false;
isProcessing.value = false;
streamingResponse.value = '';
messages.value.push({
id: generateId(),
role: 'system',
content: `Error: ${data.error}`,
timestamp: new Date(),
});
}
// Context Management
async function prepareContext(): Promise<any> {
const context: any = {
timestamp: new Date().toISOString(),
user: api.defaults.headers.common['User-Agent'],
};
for (const ctx of activeContext.value) {
switch (ctx.value) {
case 'collection':
if (props.collection) {
const itemsStore = useItemsStore();
const items = await itemsStore.getItems(props.collection, {
limit: 5,
fields: ['*'],
});
context.collection = {
name: props.collection,
items,
};
}
break;
case 'schema':
if (props.collection) {
const collectionsStore = useCollectionsStore();
const collection = collectionsStore.getCollection(props.collection);
context.schema = collection;
}
break;
case 'profile':
context.user = await fetchUserProfile();
break;
}
}
return context;
}
function addContext(option: any) {
if (!activeContext.value.find(c => c.value === option.value)) {
activeContext.value.push(option);
}
}
function removeContext(index: number) {
activeContext.value.splice(index, 1);
}
// Voice Input
function startVoiceInput() {
if (!speechRecognitionSupported.value) return;
const SpeechRecognition = window.webkitSpeechRecognition || window.SpeechRecognition;
speechRecognition.value = new SpeechRecognition();
speechRecognition.value.continuous = false;
speechRecognition.value.interimResults = true;
speechRecognition.value.onstart = () => {
isRecording.value = true;
};
speechRecognition.value.onresult = (event: any) => {
const transcript = Array.from(event.results)
.map((result: any) => result[0])
.map((result: any) => result.transcript)
.join('');
inputMessage.value = transcript;
};
speechRecognition.value.onerror = (event: any) => {
console.error('Speech recognition error:', event.error);
isRecording.value = false;
};
speechRecognition.value.onend = () => {
isRecording.value = false;
};
speechRecognition.value.start();
}
// Utility Functions
function renderMarkdown(content: string): string {
const rendered = marked(content, {
breaks: true,
gfm: true,
highlight: (code, lang) => {
// Add syntax highlighting if available
return `<pre><code class="language-${lang}">${escapeHtml(code)}</code></pre>`;
},
});
return DOMPurify.sanitize(rendered);
}
function escapeHtml(text: string): string {
const div = document.createElement('div');
div.textContent = text;
return div.innerHTML;
}
function formatTime(timestamp: Date): string {
return new Intl.DateTimeFormat('en-US', {
hour: 'numeric',
minute: 'numeric',
hour12: true,
}).format(timestamp);
}
function handleEnter(event: KeyboardEvent) {
if (!event.shiftKey) {
sendMessage();
}
}
function scrollToBottom() {
nextTick(() => {
if (messagesContainer.value) {
messagesContainer.value.scrollTop = messagesContainer.value.scrollHeight;
}
});
}
function generateId(): string {
return `msg-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`;
}
function clearChat() {
messages.value = [];
activeContext.value = [];
streamingResponse.value = '';
}
async function exportChat() {
const conversation = messages.value.map(msg => ({
role: msg.role,
content: msg.content,
timestamp: msg.timestamp.toISOString(),
}));
const blob = new Blob([JSON.stringify(conversation, null, 2)], {
type: 'application/json',
});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `chat-export-${Date.now()}.json`;
a.click();
URL.revokeObjectURL(url);
}
async function storeConversation() {
try {
await api.post('/ai/conversations', {
messages: messages.value,
context: activeContext.value,
metadata: {
model: props.model,
collection: props.collection,
},
});
} catch (error) {
console.error('Failed to store conversation:', error);
}
}
async function fetchUserProfile() {
try {
const response = await api.get('/users/me');
return response.data.data;
} catch (error) {
return null;
}
}
// Load previous conversation
async function loadConversation() {
try {
const response = await api.get('/ai/conversations/latest');
if (response.data.data) {
messages.value = response.data.data.messages.map((msg: any) => ({
...msg,
timestamp: new Date(msg.timestamp),
}));
scrollToBottom();
}
} catch (error) {
console.error('Failed to load conversation:', error);
}
}
// Lifecycle
onMounted(() => {
initializeWebSocket();
loadConversation();
});
onUnmounted(() => {
if (socket.value) {
socket.value.disconnect();
}
if (speechRecognition.value) {
speechRecognition.value.stop();
}
});
</script>
<style scoped>
.ai-chat-panel {
height: 100%;
display: flex;
flex-direction: column;
background: var(--theme--background);
border-radius: var(--theme--border-radius);
border: 1px solid var(--theme--border-color-subdued);
}
.chat-header {
display: flex;
align-items: center;
justify-content: space-between;
padding: var(--spacing-m);
border-bottom: 1px solid var(--theme--border-color-subdued);
background: var(--theme--background-accent);
}
.chat-title {
display: flex;
align-items: center;
gap: var(--spacing-s);
font-weight: 600;
color: var(--theme--foreground);
}
.chat-actions {
display: flex;
gap: var(--spacing-xs);
}
.chat-messages {
flex: 1;
overflow-y: auto;
padding: var(--spacing-m);
display: flex;
flex-direction: column;
gap: var(--spacing-m);
}
.message {
display: flex;
gap: var(--spacing-m);
animation: messageSlide 0.3s ease-out;
}
@keyframes messageSlide {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.message.user {
flex-direction: row-reverse;
}
.message-avatar {
width: 32px;
height: 32px;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
background: var(--theme--primary-background);
color: var(--theme--primary);
flex-shrink: 0;
}
.message.user .message-avatar {
background: var(--theme--background-accent);
color: var(--theme--foreground);
}
.message-content {
max-width: 70%;
display: flex;
flex-direction: column;
gap: var(--spacing-xs);
}
.message.user .message-content {
align-items: flex-end;
}
.message-text {
padding: var(--spacing-m);
background: var(--theme--background-accent);
border-radius: var(--theme--border-radius);
color: var(--theme--foreground);
line-height: 1.5;
}
.message.user .message-text {
background: var(--theme--primary);
color: white;
}
/* Markdown styling */
.message-text :deep(p) {
margin: 0 0 var(--spacing-s) 0;
}
.message-text :deep(p:last-child) {
margin-bottom: 0;
}
.message-text :deep(pre) {
background: var(--theme--background);
padding: var(--spacing-s);
border-radius: var(--theme--border-radius);
overflow-x: auto;
margin: var(--spacing-s) 0;
}
.message-text :deep(code) {
background: var(--theme--background);
padding: 2px 4px;
border-radius: 3px;
font-size: 0.9em;
}
.message-text :deep(ul),
.message-text :deep(ol) {
margin: var(--spacing-s) 0;
padding-left: var(--spacing-l);
}
.message-metadata {
display: flex;
gap: var(--spacing-m);
font-size: 0.75rem;
color: var(--theme--foreground-subdued);
}
.message-suggestions {
display: flex;
flex-wrap: wrap;
gap: var(--spacing-xs);
margin-top: var(--spacing-s);
}
.typing-indicator {
display: flex;
align-items: center;
gap: 4px;
padding: var(--spacing-m);
background: var(--theme--background-accent);
border-radius: var(--theme--border-radius);
width: fit-content;
}
.typing-indicator span {
width: 8px;
height: 8px;
border-radius: 50%;
background: var(--theme--foreground-subdued);
animation: typing 1.4s infinite;
}
.typing-indicator span:nth-child(2) {
animation-delay: 0.2s;
}
.typing-indicator span:nth-child(3) {
animation-delay: 0.4s;
}
@keyframes typing {
0%, 60%, 100% {
transform: translateY(0);
opacity: 0.5;
}
30% {
transform: translateY(-10px);
opacity: 1;
}
}
.streaming-message {
display: flex;
gap: var(--spacing-m);
}
.chat-input {
display: flex;
gap: var(--spacing-s);
padding: var(--spacing-m);
border-top: 1px solid var(--theme--border-color-subdued);
background: var(--theme--background-accent);
}
.input-container {
flex: 1;
display: flex;
align-items: flex-end;
gap: var(--spacing-xs);
background: var(--theme--background);
border-radius: var(--theme--border-radius);
padding: var(--spacing-s);
}
.input-container :deep(.v-textarea) {
flex: 1;
background: transparent;
border: none;
}
.input-actions {
display: flex;
gap: var(--spacing-xs);
}
.context-display {
padding: var(--spacing-s) var(--spacing-m);
background: var(--theme--background-subdued);
border-top: 1px solid var(--theme--border-color-subdued);
}
.context-header {
font-size: 0.875rem;
color: var(--theme--foreground-subdued);
margin-bottom: var(--spacing-xs);
}
.context-items {
display: flex;
flex-wrap: wrap;
gap: var(--spacing-xs);
}
/* Mobile responsive */
@media (max-width: 768px) {
.message-content {
max-width: 85%;
}
.chat-messages {
padding: var(--spacing-s);
}
.message-text {
padding: var(--spacing-s);
}
}
/* Message fade transition */
.message-fade-enter-active,
.message-fade-leave-active {
transition: all 0.3s ease;
}
.message-fade-enter-from {
opacity: 0;
transform: translateY(20px);
}
.message-fade-leave-to {
opacity: 0;
transform: translateX(-20px);
}
</style>
Process: Implementing AI Service Layer
Step 1: Create AI Service
// src/services/ai.service.ts
import { BaseService } from '@directus/api/services';
import OpenAI from 'openai';
import Anthropic from '@anthropic-ai/sdk';
import { Pinecone } from '@pinecone-database/pinecone';
import { encoding_for_model } from 'tiktoken';
interface AIConfig {
provider: 'openai' | 'anthropic' | 'custom';
model: string;
apiKey: string;
maxTokens?: number;
temperature?: number;
systemPrompt?: string;
}
interface EmbeddingOptions {
text: string;
model?: string;
dimensions?: number;
}
export class AIService extends BaseService {
private openai: OpenAI | null = null;
private anthropic: Anthropic | null = null;
private pinecone: Pinecone | null = null;
private tokenEncoder: any;
constructor(options: any) {
super(options);
this.initializeProviders();
}
private initializeProviders() {
// Initialize OpenAI
if (process.env.OPENAI_API_KEY) {
this.openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
this.tokenEncoder = encoding_for_model('gpt-4');
}
// Initialize Anthropic
if (process.env.ANTHROPIC_API_KEY) {
this.anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
});
}
// Initialize Pinecone for vector search
if (process.env.PINECONE_API_KEY) {
this.pinecone = new Pinecone({
apiKey: process.env.PINECONE_API_KEY,
environment: process.env.PINECONE_ENVIRONMENT || 'us-east-1',
});
}
}
// Chat Completion
async chat(options: {
messages: any[];
model?: string;
temperature?: number;
maxTokens?: number;
stream?: boolean;
systemPrompt?: string;
}): Promise<any> {
const model = options.model || 'gpt-4-turbo-preview';
const temperature = options.temperature ?? 0.7;
const maxTokens = options.maxTokens || 2000;
// Add system prompt if provided
const messages = options.systemPrompt
? [{ role: 'system', content: options.systemPrompt }, ...options.messages]
: options.messages;
// Token counting and optimization
const totalTokens = this.countTokens(messages);
if (totalTokens > 8000) {
// Truncate or summarize older messages
messages.splice(1, messages.length - 10);
}
if (model.startsWith('claude')) {
return this.anthropicChat(messages, model, temperature, maxTokens, options.stream);
} else {
return this.openaiChat(messages, model, temperature, maxTokens, options.stream);
}
}
private async openaiChat(
messages: any[],
model: string,
temperature: number,
maxTokens: number,
stream?: boolean
): Promise<any> {
if (!this.openai) throw new Error('OpenAI not configured');
if (stream) {
const stream = await this.openai.chat.completions.create({
model,
messages,
temperature,
max_tokens: maxTokens,
stream: true,
});
return stream;
} else {
const completion = await this.openai.chat.completions.create({
model,
messages,
temperature,
max_tokens: maxTokens,
response_format: { type: 'json_object' }, // For structured output
});
return {
content: completion.choices[0].message.content,
usage: completion.usage,
model: completion.model,
};
}
}
private async anthropicChat(
messages: any[],
model: string,
temperature: number,
maxTokens: number,
stream?: boolean
): Promise<any> {
if (!this.anthropic) throw new Error('Anthropic not configured');
// Convert messages to Claude format
const systemPrompt = messages.find(m => m.role === 'system')?.content || '';
const conversationMessages = messages.filter(m => m.role !== 'system');
const response = await this.anthropic.messages.create({
model: model.replace('claude-', ''),
max_tokens: maxTokens,
temperature,
system: systemPrompt,
messages: conversationMessages,
stream,
});
if (stream) {
return response;
} else {
return {
content: response.content[0].text,
usage: {
prompt_tokens: response.usage.input_tokens,
completion_tokens: response.usage.output_tokens,
},
model: response.model,
};
}
}
// Content Generation
async generateContent(options: {
type: 'article' | 'description' | 'summary' | 'translation';
input: string;
targetLanguage?: string;
tone?: 'formal' | 'casual' | 'technical' | 'creative';
length?: 'short' | 'medium' | 'long';
}): Promise<string> {
const prompts = {
article: `Write a comprehensive article about: ${options.input}
Tone: ${options.tone || 'formal'}
Length: ${options.length || 'medium'}
Include: Introduction, main points, and conclusion`,
description: `Write a compelling product/service description for: ${options.input}
Tone: ${options.tone || 'casual'}
Focus on benefits and unique features`,
summary: `Summarize the following content concisely: ${options.input}
Length: ${options.length || 'short'}
Keep key points and important information`,
translation: `Translate the following to ${options.targetLanguage}: ${options.input}
Maintain tone and context accurately`,
};
const response = await this.chat({
messages: [{ role: 'user', content: prompts[options.type] }],
temperature: options.type === 'translation' ? 0.3 : 0.7,
});
return response.content;
}
// Embeddings and Vector Search
async createEmbedding(options: EmbeddingOptions): Promise<number[]> {
if (!this.openai) throw new Error('OpenAI not configured');
const response = await this.openai.embeddings.create({
model: options.model || 'text-embedding-3-small',
input: options.text,
dimensions: options.dimensions || 1536,
});
return response.data[0].embedding;
}
async vectorSearch(options: {
query: string;
collection: string;
topK?: number;
filter?: any;
}): Promise<any[]> {
if (!this.pinecone) throw new Error('Pinecone not configured');
// Get query embedding
const queryEmbedding = await this.createEmbedding({ text: options.query });
// Search in Pinecone
const index = this.pinecone.index(options.collection);
const results = await index.query({
vector: queryEmbedding,
topK: options.topK || 10,
filter: options.filter,
includeMetadata: true,
includeValues: false,
});
return results.matches || [];
}
// RAG (Retrieval Augmented Generation)
async ragQuery(options: {
query: string;
collection: string;
systemContext?: string;
topK?: number;
}): Promise<any> {
// 1. Retrieve relevant documents
const relevantDocs = await this.vectorSearch({
query: options.query,
collection: options.collection,
topK: options.topK || 5,
});
// 2. Build context from retrieved documents
const context = relevantDocs
.map(doc => doc.metadata?.content || '')
.join('\n\n---\n\n');
// 3. Generate response with context
const systemPrompt = `${options.systemContext || 'You are a helpful assistant.'}
Use the following context to answer questions. If the answer cannot be found in the context, say so.
Context:
${context}`;
const response = await this.chat({
messages: [{ role: 'user', content: options.query }],
systemPrompt,
temperature: 0.3, // Lower temperature for factual responses
});
return {
answer: response.content,
sources: relevantDocs.map(doc => ({
id: doc.id,
score: doc.score,
metadata: doc.metadata,
})),
usage: response.usage,
};
}
// Content Moderation
async moderateContent(content: string): Promise<{
safe: boolean;
categories: any;
flaggedTerms: string[];
}> {
if (!this.openai) throw new Error('OpenAI not configured');
const moderation = await this.openai.moderations.create({
input: content,
});
const result = moderation.results[0];
const flaggedCategories = Object.entries(result.categories)
.filter(([_, flagged]) => flagged)
.map(([category]) => category);
return {
safe: !result.flagged,
categories: result.category_scores,
flaggedTerms: flaggedCategories,
};
}
// Smart Suggestions
async generateSuggestions(options: {
context: string;
type: 'autocomplete' | 'next_actions' | 'related_content';
count?: number;
}): Promise<string[]> {
const prompts = {
autocomplete: `Based on this context, suggest ${options.count || 5} possible completions:
Context: ${options.context}
Return as JSON array of strings`,
next_actions: `Based on this context, suggest ${options.count || 5} logical next actions:
Context: ${options.context}
Return as JSON array of action strings`,
related_content: `Based on this context, suggest ${options.count || 5} related topics:
Context: ${options.context}
Return as JSON array of topic strings`,
};
const response = await this.chat({
messages: [{ role: 'user', content: prompts[options.type] }],
temperature: 0.8,
});
try {
return JSON.parse(response.content);
} catch {
return [];
}
}
// Function Calling for Structured Actions
async functionCall(options: {
query: string;
functions: any[];
context?: any;
}): Promise<any> {
if (!this.openai) throw new Error('OpenAI not configured');
const completion = await this.openai.chat.completions.create({
model: 'gpt-4-turbo-preview',
messages: [
{
role: 'system',
content: 'You are an assistant that helps users interact with the Directus system.',
},
{
role: 'user',
content: options.query,
},
],
functions: options.functions,
function_call: 'auto',
});
const message = completion.choices[0].message;
if (message.function_call) {
return {
function: message.function_call.name,
arguments: JSON.parse(message.function_call.arguments),
};
}
return {
message: message.content,
};
}
// Token Management
private countTokens(messages: any[]): number {
if (!this.tokenEncoder) return 0;
let totalTokens = 0;
for (const message of messages) {
const content = typeof message === 'string' ? message : message.content;
totalTokens += this.tokenEncoder.encode(content).length;
}
return totalTokens;
}
// Conversation Memory Management
async storeConversation(conversation: {
id: string;
messages: any[];
metadata: any;
}): Promise<void> {
await this.knex('ai_conversations').insert({
id: conversation.id,
messages: JSON.stringify(conversation.messages),
metadata: JSON.stringify(conversation.metadata),
created_at: new Date(),
user_id: this.accountability?.user,
});
// Store embeddings for semantic search
const summary = await this.generateContent({
type: 'summary',
input: conversation.messages.map(m => m.content).join('\n'),
length: 'short',
});
const embedding = await this.createEmbedding({ text: summary });
if (this.pinecone) {
const index = this.pinecone.index('conversations');
await index.upsert([
{
id: conversation.id,
values: embedding,
metadata: {
summary,
user_id: this.accountability?.user,
created_at: new Date().toISOString(),
},
},
]);
}
}
async searchConversations(query: string, limit: number = 5): Promise<any[]> {
const results = await this.vectorSearch({
query,
collection: 'conversations',
topK: limit,
filter: {
user_id: this.accountability?.user,
},
});
// Fetch full conversations
const conversationIds = results.map(r => r.id);
const conversations = await this.knex('ai_conversations')
.whereIn('id', conversationIds)
.select();
return conversations.map(conv => ({
...conv,
messages: JSON.parse(conv.messages),
metadata: JSON.parse(conv.metadata),
}));
}
}
Process: Implementing Real-time AI Features
Step 1: WebSocket Handler
// src/websocket/ai-websocket.ts
import { Server as SocketServer } from 'socket.io';
import { AIService } from '../services/ai.service';
import { Readable } from 'stream';
export function setupAIWebSocket(io: SocketServer, aiService: AIService) {
const aiNamespace = io.of('/ai');
aiNamespace.on('connection', (socket) => {
console.log('AI client connected:', socket.id);
// Handle chat messages with streaming
socket.on('ai:message', async (data) => {
try {
socket.emit('ai:typing');
const stream = await aiService.chat({
messages: data.history || [],
model: data.config?.model || 'gpt-4-turbo-preview',
temperature: data.config?.temperature || 0.7,
maxTokens: data.config?.maxTokens || 2000,
systemPrompt: data.config?.systemPrompt,
stream: true,
});
let fullResponse = '';
let tokenCount = 0;
// Handle streaming response
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || '';
if (content) {
fullResponse += content;
tokenCount++;
socket.emit('ai:response', {
chunk: content,
tokens: tokenCount,
});
}
}
// Generate suggestions based on response
const suggestions = await aiService.generateSuggestions({
context: fullResponse,
type: 'next_actions',
count: 3,
});
socket.emit('ai:complete', {
content: fullResponse,
tokens: tokenCount,
suggestions,
});
} catch (error) {
socket.emit('ai:error', {
error: error.message || 'An error occurred',
});
}
});
// Handle image generation
socket.on('ai:generate-image', async (data) => {
try {
const imageUrl = await aiService.generateImage({
prompt: data.prompt,
size: data.size || '1024x1024',
style: data.style || 'vivid',
});
socket.emit('ai:image', { url: imageUrl });
} catch (error) {
socket.emit('ai:error', { error: error.message });
}
});
// Handle voice transcription
socket.on('ai:transcribe', async (data) => {
try {
const transcription = await aiService.transcribeAudio({
audio: data.audio,
language: data.language,
});
socket.emit('ai:transcription', { text: transcription });
} catch (error) {
socket.emit('ai:error', { error: error.message });
}
});
socket.on('disconnect', () => {
console.log('AI client disconnected:', socket.id);
});
});
}
AI-Powered Flows
Custom AI Operations for Flows
// src/operations/ai-operation.ts
import { defineOperationApi } from '@directus/extensions-sdk';
export default defineOperationApi({
id: 'ai-content-processor',
handler: async (options, context) => {
const { services } = context;
const { AIService, ItemsService } = services;
const aiService = new AIService({ knex: context.database });
const itemsService = new ItemsService(options.collection, {
schema: await context.getSchema(),
});
const results = [];
// Fetch items to process
const items = await itemsService.readByQuery({
filter: options.filter || {},
limit: options.batchSize || 10,
});
for (const item of items) {
try {
let processedContent;
switch (options.operation) {
case 'summarize':
processedContent = await aiService.generateContent({
type: 'summary',
input: item[options.sourceField],
length: options.summaryLength || 'short',
});
break;
case 'translate':
processedContent = await aiService.generateContent({
type: 'translation',
input: item[options.sourceField],
targetLanguage: options.targetLanguage,
});
break;
case 'moderate':
const moderation = await aiService.moderateContent(
item[options.sourceField]
);
processedContent = moderation.safe ? 'approved' : 'flagged';
break;
case 'enrich':
processedContent = await aiService.ragQuery({
query: `Enrich this content: ${item[options.sourceField]}`,
collection: 'knowledge_base',
});
break;
case 'extract':
processedContent = await aiService.functionCall({
query: `Extract ${options.extractType} from: ${item[options.sourceField]}`,
functions: [
{
name: 'extract_data',
parameters: {
type: 'object',
properties: options.extractSchema,
},
},
],
});
break;
}
// Update item with processed content
await itemsService.updateOne(item.id, {
[options.targetField]: processedContent,
ai_processed_at: new Date(),
});
results.push({
id: item.id,
status: 'success',
processed: processedContent,
});
} catch (error) {
results.push({
id: item.id,
status: 'error',
error: error.message,
});
}
}
return {
processed: results.length,
results,
};
},
});
Natural Language Query Interface
NLQ Implementation
// src/services/nlq.service.ts
export class NaturalLanguageQueryService {
constructor(
private aiService: AIService,
private database: any
) {}
async processQuery(naturalQuery: string, collection: string): Promise<any> {
// Convert natural language to SQL/filter
const structuredQuery = await this.convertToStructuredQuery(
naturalQuery,
collection
);
// Execute query
const results = await this.executeQuery(structuredQuery, collection);
// Format response in natural language
const nlResponse = await this.formatResponse(
naturalQuery,
results,
collection
);
return {
query: structuredQuery,
results,
response: nlResponse,
};
}
private async convertToStructuredQuery(nlQuery: string, collection: string) {
const schema = await this.getCollectionSchema(collection);
const response = await this.aiService.functionCall({
query: nlQuery,
functions: [
{
name: 'create_query',
description: 'Convert natural language to database query',
parameters: {
type: 'object',
properties: {
filter: {
type: 'object',
description: 'Directus filter object',
},
sort: {
type: 'array',
items: { type: 'string' },
},
limit: {
type: 'number',
},
fields: {
type: 'array',
items: { type: 'string' },
},
aggregate: {
type: 'object',
},
},
},
},
],
context: { schema },
});
return response.arguments;
}
private async executeQuery(query: any, collection: string) {
// Build Knex query based on structured query
let knexQuery = this.database(collection);
if (query.filter) {
knexQuery = this.applyFilters(knexQuery, query.filter);
}
if (query.sort) {
query.sort.forEach((sortField: string) => {
const direction = sortField.startsWith('-') ? 'desc' : 'asc';
const field = sortField.replace(/^-/, '');
knexQuery = knexQuery.orderBy(field, direction);
});
}
if (query.limit) {
knexQuery = knexQuery.limit(query.limit);
}
if (query.fields && query.fields.length > 0) {
knexQuery = knexQuery.select(query.fields);
}
return await knexQuery;
}
private applyFilters(query: any, filters: any): any {
Object.entries(filters).forEach(([field, condition]: [string, any]) => {
if (typeof condition === 'object') {
Object.entries(condition).forEach(([op, value]) => {
switch (op) {
case '_eq':
query = query.where(field, '=', value);
break;
case '_neq':
query = query.where(field, '!=', value);
break;
case '_lt':
query = query.where(field, '<', value);
break;
case '_lte':
query = query.where(field, '<=', value);
break;
case '_gt':
query = query.where(field, '>', value);
break;
case '_gte':
query = query.where(field, '>=', value);
break;
case '_contains':
query = query.where(field, 'like', `%${value}%`);
break;
case '_in':
query = query.whereIn(field, value);
break;
case '_nin':
query = query.whereNotIn(field, value);
break;
}
});
} else {
query = query.where(field, '=', condition);
}
});
return query;
}
private async formatResponse(
query: string,
results: any[],
collection: string
): Promise<string> {
const response = await this.aiService.chat({
messages: [
{
role: 'user',
content: `Original query: "${query}"
Collection: ${collection}
Results: ${JSON.stringify(results.slice(0, 10))}
Please provide a natural language response summarizing these results.`,
},
],
temperature: 0.7,
});
return response.content;
}
private async getCollectionSchema(collection: string) {
// Fetch and return collection schema
const fields = await this.database('directus_fields')
.where('collection', collection)
.select('field', 'type', 'schema');
return fields;
}
}
AI Content Moderation Hook
// src/hooks/ai-moderation.ts
import { defineHook } from '@directus/extensions-sdk';
export default defineHook(({ filter, action }, context) => {
const { services, logger } = context;
filter('items.create', async (payload, meta) => {
// Check if content moderation is enabled for this collection
const moderatedCollections = ['comments', 'posts', 'reviews'];
if (moderatedCollections.includes(meta.collection)) {
const aiService = new services.AIService({ knex: context.database });
// Combine all text fields for moderation
const contentToModerate = Object.values(payload)
.filter(value => typeof value === 'string')
.join(' ');
const moderation = await aiService.moderateContent(contentToModerate);
if (!moderation.safe) {
// Flag content for review
payload.status = 'pending_review';
payload.moderation_flags = moderation.flaggedTerms;
payload.moderation_scores = moderation.categories;
// Log for audit
logger.warn('Content flagged for moderation:', {
collection: meta.collection,
flags: moderation.flaggedTerms,
});
} else {
payload.status = 'approved';
}
}
return payload;
});
action('items.create', async ({ payload, key, collection }) => {
// Generate AI suggestions for new content
if (collection === 'articles' && payload.status === 'draft') {
const aiService = new services.AIService({ knex: context.database });
// Generate title suggestions if not provided
if (!payload.title && payload.content) {
const suggestions = await aiService.generateContent({
type: 'title',
input: payload.content.substring(0, 500),
});
// Store suggestions for user
await context.database('content_suggestions').insert({
item_id: key,
collection,
type: 'title',
suggestions: JSON.stringify(suggestions),
});
}
// Generate tags
const tags = await aiService.functionCall({
query: `Extract relevant tags from: ${payload.content}`,
functions: [
{
name: 'extract_tags',
parameters: {
type: 'object',
properties: {
tags: {
type: 'array',
items: { type: 'string' },
maxItems: 10,
},
},
},
},
],
});
if (tags.arguments?.tags) {
await context.database('article_tags').insert(
tags.arguments.tags.map((tag: string) => ({
article_id: key,
tag,
}))
);
}
}
});
});
Testing AI Features
// test/ai-service.test.ts
import { describe, it, expect, vi, beforeEach } from 'vitest';
import { AIService } from '../src/services/ai.service';
describe('AI Service', () => {
let aiService: AIService;
beforeEach(() => {
aiService = new AIService({
knex: vi.fn(),
accountability: { user: 'test-user' },
});
});
describe('Chat Completion', () => {
it('should generate chat response', async () => {
const response = await aiService.chat({
messages: [
{ role: 'user', content: 'What is Directus?' },
],
model: 'gpt-4',
temperature: 0.7,
});
expect(response).toHaveProperty('content');
expect(response).toHaveProperty('usage');
expect(response.content).toBeTruthy();
});
it('should handle streaming responses', async () => {
const stream = await aiService.chat({
messages: [
{ role: 'user', content: 'Tell me a story' },
],
stream: true,
});
let fullContent = '';
for await (const chunk of stream) {
fullContent += chunk.choices[0]?.delta?.content || '';
}
expect(fullContent.length).toBeGreaterThan(0);
});
});
describe('Content Generation', () => {
it('should generate article content', async () => {
const content = await aiService.generateContent({
type: 'article',
input: 'Benefits of using Directus',
tone: 'technical',
length: 'medium',
});
expect(content).toBeTruthy();
expect(content.length).toBeGreaterThan(100);
});
it('should translate content', async () => {
const translation = await aiService.generateContent({
type: 'translation',
input: 'Hello world',
targetLanguage: 'Spanish',
});
expect(translation).toContain('Hola');
});
});
describe('Content Moderation', () => {
it('should flag inappropriate content', async () => {
const moderation = await aiService.moderateContent(
'This is a test of inappropriate content [insert bad words]'
);
expect(moderation).toHaveProperty('safe');
expect(moderation).toHaveProperty('categories');
expect(moderation).toHaveProperty('flaggedTerms');
});
it('should pass safe content', async () => {
const moderation = await aiService.moderateContent(
'This is a perfectly safe and appropriate message.'
);
expect(moderation.safe).toBe(true);
expect(moderation.flaggedTerms).toHaveLength(0);
});
});
describe('Vector Search', () => {
it('should create embeddings', async () => {
const embedding = await aiService.createEmbedding({
text: 'Test content for embedding',
});
expect(Array.isArray(embedding)).toBe(true);
expect(embedding.length).toBeGreaterThan(0);
});
it('should perform vector search', async () => {
const results = await aiService.vectorSearch({
query: 'Find similar documents',
collection: 'documents',
topK: 5,
});
expect(Array.isArray(results)).toBe(true);
expect(results.length).toBeLessThanOrEqual(5);
});
});
describe('RAG Queries', () => {
it('should answer questions with context', async () => {
const response = await aiService.ragQuery({
query: 'What is the pricing?',
collection: 'knowledge_base',
});
expect(response).toHaveProperty('answer');
expect(response).toHaveProperty('sources');
expect(response).toHaveProperty('usage');
});
});
});
Performance Optimization
Caching AI Responses
// src/cache/ai-cache.ts
import { LRUCache } from 'lru-cache';
import crypto from 'crypto';
export class AICacheService {
private cache: LRUCache<string, any>;
private embedCache: LRUCache<string, number[]>;
constructor() {
// Response cache
this.cache = new LRUCache({
max: 1000,
ttl: 1000 * 60 * 60, // 1 hour
updateAgeOnGet: true,
});
// Embedding cache (longer TTL)
this.embedCache = new LRUCache({
max: 5000,
ttl: 1000 * 60 * 60 * 24 * 7, // 7 days
});
}
getCacheKey(input: any): string {
const hash = crypto.createHash('sha256');
hash.update(JSON.stringify(input));
return hash.digest('hex');
}
async getCachedResponse(key: string): Promise<any | null> {
return this.cache.get(key);
}
async setCachedResponse(key: string, response: any): Promise<void> {
this.cache.set(key, response);
}
async getCachedEmbedding(text: string): Promise<number[] | null> {
const key = this.getCacheKey(text);
return this.embedCache.get(key);
}
async setCachedEmbedding(text: string, embedding: number[]): Promise<void> {
const key = this.getCacheKey(text);
this.embedCache.set(key, embedding);
}
// Batch processing optimization
async batchProcess<T, R>(
items: T[],
processor: (batch: T[]) => Promise<R[]>,
batchSize: number = 10
): Promise<R[]> {
const results: R[] = [];
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
const batchResults = await processor(batch);
results.push(...batchResults);
// Rate limiting
if (i + batchSize < items.length) {
await new Promise(resolve => setTimeout(resolve, 100));
}
}
return results;
}
}
Success Metrics
- ✅ Chat interface responds in < 500ms (first token)
- ✅ AI responses are contextually relevant 95%+ of the time
- ✅ Content moderation catches inappropriate content with 98%+ accuracy
- ✅ Vector search returns relevant results in < 200ms
- ✅ RAG system provides accurate answers with source citations
- ✅ Natural language queries convert correctly 90%+ of the time
- ✅ WebSocket connections remain stable for extended sessions
- ✅ Token usage is optimized with proper truncation
- ✅ Embeddings are cached effectively reducing API calls by 70%
- ✅ Error handling prevents AI failures from breaking workflows
Resources
- OpenAI API Documentation
- Anthropic Claude API
- Pinecone Vector Database
- LangChain JS
- Socket.io Documentation
- Directus WebSockets
- Vue 3 Composition API
- TikToken for Token Counting
Version History
- 1.0.0 - Initial release with comprehensive AI integration patterns