Claude Code Plugins

Community-maintained marketplace

Feedback

categorizing-files

@hernamesbarbara/promptkit
0
0

Defines the standard 8-category taxonomy for classifying project files: Config, Tests, Docs, Scripts, Source Code, Data, AI Tooling, and Other. REFERENCE THIS SKILL whenever categorizing files, auditing project structure, or answering 'what types of files are here.' Apply these categories and patterns whether using the bundled script or manual analysis.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name categorizing-files
description Defines the standard 8-category taxonomy for classifying project files: Config, Tests, Docs, Scripts, Source Code, Data, AI Tooling, and Other. REFERENCE THIS SKILL whenever categorizing files, auditing project structure, or answering 'what types of files are here.' Apply these categories and patterns whether using the bundled script or manual analysis.

File Categorization

Categories

Category Description
Config Configuration files for tools, environments, and build systems
Tests Test files, fixtures, and testing utilities
Docs Documentation, READMEs, and guides
Scripts Standalone executable scripts and automation
Source Code Core application/library source files
Data Data files, datasets, and static assets
AI Tooling AI/ML configs, prompts, and agent definitions
Other Files that don't fit other categories (fallback)

Category Mapping Rules

Always use exactly these 8 categories — do not invent new ones like "Schema", "Database", or "Reference Data." Map edge cases as follows:

File Type Category Reasoning
SQL DDL (CREATE TABLE) Docs Documents database structure
SQL DML (INSERT/SELECT) Data Contains or queries data
.duckdb, .sqlite files Data Database storage
schema.json, openapi.yaml Docs Specification/contract files
Shell scripts (.sh) Scripts Executable automation
requirements.txt Config Dependency configuration

Directory Exclusion

When scanning directories, the script uses layered exclusion to prevent wasting tokens on useless output:

Layer 1: Always Excluded (non-negotiable)

  • node_modules/, bower_components/, jspm_packages/
  • .git/, .svn/, .hg/
  • __pycache__/, .pytest_cache/, .tox/, .mypy_cache/
  • venv/, .venv/

Layer 2: .gitignore (if present and parseable)

  • Respects project-specific exclusions
  • Requires pathspec library; warns if unavailable

Layer 3: Extended Defaults (fallback when no .gitignore)

  • dist/, build/, out/, _build/, target/
  • vendor/, coverage/, .nyc_output/, htmlcov/
  • env/, *.egg-info/

Layer 4: Escape Hatches

  • --include-ignored: Bypass Layers 2-3 (but NOT Layer 1)
  • --include-all: Bypass ALL layers (use with extreme caution)

Important: .env as a FILE is categorized as Config. .env as a DIRECTORY is excluded.

When reporting results, explain which exclusion path was used:

"Excluded 3 directories via Layer 1 (always-exclude), 2 via .gitignore"


Categorization Priority

Apply rules in this order (first match wins):

  1. Directory path: tests/ → Tests, src/ → Source Code, docs/ → Docs, references/ → Docs
  2. Schema/spec files: schema.json, openapi.yaml → Docs (see patterns.md for full list)
  3. Filename pattern: test_*.py → Tests, *.config.js → Config
  4. Extension: .sh → Scripts, .csv → Data, .py → Source Code
  5. Content analysis (if still ambiguous): Check for test assertions, CLI parsing, etc.

Categorization Algorithm

function categorize(filePath, content):

  # PHASE 1: Filename + directory rules
  category = byLocationOrExtension(filePath)
  if category != UNKNOWN: return (category, "High")

  # PHASE 2: Frontmatter refinement
  fm = extractYAMLFrontmatter(content)
  if fm indicates config: return (CONFIG, "Medium")
  if fm indicates ai_tooling: return (AI_TOOLING, "Medium")

  # PHASE 3: Content structure analysis
  if looksLikeTest(content): return (TESTS, "Medium")
  if looksLikeScript(content): return (SCRIPTS, "Medium")
  if looksLikeSource(content): return (SOURCE_CODE, "Medium")
  if looksLikeDocs(content): return (DOCS, "Medium")
  if looksLikeData(content): return (DATA, "Medium")

  # PHASE 4: Keyword detection (fallback)
  kw_category = detectByKeywords(content)
  if kw_category: return (kw_category, "Low")

  return (OTHER, "Low")

Pattern Matching Details

For complete pattern reference, see references/patterns.md:

  • Directory patterns (test/, src/, config/, etc.)
  • Filename patterns (.config.js, test_.py, etc.)
  • Frontmatter indicators
  • Content structure signals
  • Keyword detection rules

Output Format

For each file, provide:

### [Filename]

- **Category**: [Config | Tests | Docs | Scripts | Source Code | Data | AI Tooling | Other]
- **Confidence**: [High | Medium | Low]
- **Reasoning**: [Why this category was chosen]
- **Recommended Location**: [Suggested directory if misfiled, or "Correct" if well-placed]

Confidence Guidelines:

  • High (>95%): Strong directory + extension match (Phase 1)
  • Medium (>80%): Frontmatter or content structure match (Phases 2-3)
  • Low: Keyword match or no clear signals (Phase 4)

Content Analysis Caveats

When using --analyze-content (Phases 2-4):

  • False positives from examples: Files containing test keywords as examples (like documentation showing assert or describe()) may be miscategorized as Tests
  • Sampling limits: Large files (>5KB) are sampled from the beginning, not fully analyzed
  • Binary files: Non-text files are skipped and categorized as Other
  • Keyword ambiguity: Common words like "class" or "function" appear in both Source Code and Docs

Recommendation: Use Phase 1 (path-based) categorization for speed and reliability. Enable --analyze-content only for ambiguous files or when you need higher accuracy on edge cases.


Examples

Example 1: Clear Categorization

User: What category is src/utils/helpers.py?

Response:

### src/utils/helpers.py
- **Category**: Source Code
- **Confidence**: High
- **Reasoning**: Located in `src/` directory; `.py` extension; module structure
- **Recommended Location**: Correct

Example 2: Misfiled Resource

User: Categorize customers.csv in root directory.

Response:

### customers.csv
- **Category**: Data
- **Confidence**: High
- **Reasoning**: CSV extension; tabular structure detected
- **Recommended Location**: `data/customers.csv`

Example 3: Ambiguous File

User: What category is notes.txt?

Response:

### notes.txt
- **Category**: Other
- **Confidence**: Low
- **Reasoning**: Prose content; no structural markers; could be Docs if formalized
- **Recommended Location**: Manual review needed — consider `docs/` if documentation

Example 4: Project Inventory

User: Categorize all files in this project.

Response:

Config (5):
  - .gitignore
  - pyproject.toml
  - docker-compose.yml

Source Code (12):
  - src/main.py
  - src/utils/helpers.py

Tests (4):
  - tests/test_main.py
  - tests/conftest.py

Docs (2):
  - README.md
  - docs/API.md

AI Tooling (1):
  - .claude/skills/categorizing-files/SKILL.md

Other (1):
  - notes.txt (Low confidence — review needed)

Excluded 2 directories: 1 via Layer 1 (always-exclude), 1 via .gitignore

Optional: Automated Script

For large directories or programmatic use, the bundled script implements this methodology with automatic directory exclusion (skips node_modules/, venv/, .git/, etc.):

# Basic usage
python scripts/categorize.py [path]

# Enable content analysis (Phases 2-4)
python scripts/categorize.py --analyze-content [path]

# Include .gitignore-excluded files (bypass Layers 2-3)
python scripts/categorize.py --include-ignored [path]

# Include ALL files including node_modules (use with caution)
python scripts/categorize.py --include-all [path]

For a single file:

python scripts/categorize.py myfile.py
# Output: myfile.py: Source Code (High)

For a directory:

python scripts/categorize.py .
# Output: Grouped list by category with exclusion summary

See scripts/categorize.py for implementation details and programmatic API.