Claude Code Plugins

Community-maintained marketplace

Feedback

Build AI agents with AWS Bedrock AgentCore. Use when developing agents on AWS infrastructure, creating tool-use patterns, implementing agent orchestration, or integrating with Bedrock models. Triggers on keywords like AgentCore, Bedrock Agent, AWS agent, Lambda tools.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name aws-agentcore
description Build AI agents with AWS Bedrock AgentCore. Use when developing agents on AWS infrastructure, creating tool-use patterns, implementing agent orchestration, or integrating with Bedrock models. Triggers on keywords like AgentCore, Bedrock Agent, AWS agent, Lambda tools.

AWS Bedrock AgentCore

Build production-grade AI agents on AWS infrastructure.

Quick Start

import boto3
from agentcore import Agent, Tool

# Initialize AgentCore client
client = boto3.client('bedrock-agent-runtime')

# Define a tool
@Tool(name="search_database", description="Search the product database")
def search_database(query: str, limit: int = 10) -> dict:
    # Tool implementation
    return {"results": [...]}

# Create agent
agent = Agent(
    model_id="anthropic.claude-3-sonnet",
    tools=[search_database],
    instructions="You are a helpful product search assistant."
)

# Invoke agent
response = agent.invoke("Find laptops under $1000")

AgentCore Components

AgentCore provides these primitives:

Component Purpose
Runtime Serverless agent execution (framework-agnostic)
Gateway Convert APIs/Lambda to MCP-compatible tools
Memory Multi-strategy memory (semantic, user preference)
Identity Auth with Cognito, Okta, Google, EntraID
Tools Code Interpreter, Browser Tool
Observability Deep analysis and tracing

Lambda Tool Integration

# Lambda function as tool
import json

def lambda_handler(event, context):
    action = event.get('actionGroup')
    function = event.get('function')
    parameters = event.get('parameters', [])
    
    # Parse parameters
    params = {p['name']: p['value'] for p in parameters}
    
    if function == 'get_weather':
        result = get_weather(params['city'])
    elif function == 'book_flight':
        result = book_flight(params['origin'], params['destination'])
    
    return {
        'response': {
            'actionGroup': action,
            'function': function,
            'functionResponse': {
                'responseBody': {
                    'TEXT': {'body': json.dumps(result)}
                }
            }
        }
    }

Agent Orchestration

from agentcore import SupervisorAgent, SubAgent

# Create specialized sub-agents
research_agent = SubAgent(
    name="researcher",
    model_id="anthropic.claude-3-sonnet",
    instructions="You research and gather information."
)

writer_agent = SubAgent(
    name="writer", 
    model_id="anthropic.claude-3-sonnet",
    instructions="You write clear, engaging content."
)

# Create supervisor
supervisor = SupervisorAgent(
    model_id="anthropic.claude-3-opus",
    sub_agents=[research_agent, writer_agent],
    routing_strategy="supervisor"  # or "intent_classification"
)

response = supervisor.invoke("Write a blog post about AI agents")

Guardrails Integration

from agentcore import Agent, Guardrail

# Define guardrail
guardrail = Guardrail(
    guardrail_id="my-guardrail-id",
    guardrail_version="1"
)

agent = Agent(
    model_id="anthropic.claude-3-sonnet",
    guardrails=[guardrail],
    tools=[...],
)

AgentCore Gateway

Convert existing APIs to MCP-compatible tools:

# gateway_setup.py
from bedrock_agentcore import GatewayClient

gateway = GatewayClient()

# Create gateway from OpenAPI spec
gateway.create_target(
    name="my-api",
    type="OPENAPI",
    openapi_spec_path="./api-spec.yaml"
)

# Create gateway from Lambda function
gateway.create_target(
    name="my-lambda-tool",
    type="LAMBDA",
    function_arn="arn:aws:lambda:us-east-1:123456789:function:my-tool"
)

AgentCore Memory

from agentcore import Agent, Memory

# Create memory with multiple strategies
memory = Memory(
    name="customer-support-memory",
    strategies=["semantic", "user_preference"]
)

agent = Agent(
    model_id="anthropic.claude-3-sonnet",
    memory=memory,
    tools=[...],
)

# Memory persists across sessions
response = agent.invoke(
    "What did we discuss last time?",
    session_id="user-123"
)

Official Use Cases Repository

AWS provides production-ready implementations:

Repository: https://github.com/awslabs/amazon-bedrock-agentcore-samples

Available Use Cases (02-use-cases/)

Use Case Description
A2A Multi-Agent Incident Response Agent-to-Agent with Strands + OpenAI SDK
Customer Support Assistant Memory, Knowledge Base, Google OAuth
Market Trends Agent LangGraph with browser tools
DB Performance Analyzer PostgreSQL integration
Device Management Agent IoT with Cognito auth
Enterprise Web Intelligence Browser tools for research
Text to Python IDE AgentCore Code Interpreter
Video Games Sales Assistant Amplify + CDK deployment

Quick Start with Use Cases

git clone https://github.com/awslabs/amazon-bedrock-agentcore-samples.git
cd amazon-bedrock-agentcore-samples/02-use-cases/customer-support-assistant
# Follow README for deployment

Resources