Claude Code Plugins

Community-maintained marketplace

Feedback

Expert guidance for building stateful, multi-actor AI agents with LangGraph - graphs, nodes, edges, state management, and agent architectures.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name langgraph
description Expert guidance for building stateful, multi-actor AI agents with LangGraph - graphs, nodes, edges, state management, and agent architectures.

LangGraph Skill

Use this skill when building stateful, cyclic AI agent workflows with LangGraph.

Core Concepts

1. State Definition

from typing import Annotated, TypedDict
from langgraph.graph.message import add_messages

class AgentState(TypedDict):
    messages: Annotated[list, add_messages]
    context: str
    iteration: int

# With Pydantic
from pydantic import BaseModel

class State(BaseModel):
    messages: list = []
    current_step: str = "start"

2. Basic Graph Structure

from langgraph.graph import StateGraph, START, END

# Define the graph
workflow = StateGraph(AgentState)

# Add nodes (functions that transform state)
def agent_node(state: AgentState) -> dict:
    response = llm.invoke(state["messages"])
    return {"messages": [response]}

def tool_node(state: AgentState) -> dict:
    # Execute tools based on last message
    return {"messages": [tool_result]}

workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)

# Add edges
workflow.add_edge(START, "agent")
workflow.add_edge("tools", "agent")

# Conditional edge
def should_continue(state: AgentState) -> str:
    last_message = state["messages"][-1]
    if last_message.tool_calls:
        return "tools"
    return END

workflow.add_conditional_edges("agent", should_continue)

# Compile
app = workflow.compile()

3. Prebuilt Components

from langgraph.prebuilt import create_react_agent, ToolNode

# Quick ReAct agent
tools = [search_tool, calculator_tool]
agent = create_react_agent(llm, tools)

# Tool execution node
tool_node = ToolNode(tools)

4. Checkpointing (Memory/Persistence)

from langgraph.checkpoint.memory import MemorySaver
from langgraph.checkpoint.sqlite import SqliteSaver

# In-memory (for development)
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)

# SQLite (for persistence)
with SqliteSaver.from_conn_string(":memory:") as saver:
    app = workflow.compile(checkpointer=saver)

# Invoke with thread_id for conversation continuity
config = {"configurable": {"thread_id": "user-123"}}
result = app.invoke({"messages": [HumanMessage("Hi")]}, config)

# Continue conversation
result = app.invoke({"messages": [HumanMessage("Follow up")]}, config)

5. Human-in-the-Loop

from langgraph.graph import StateGraph

# Add interrupt before sensitive operations
app = workflow.compile(
    checkpointer=memory,
    interrupt_before=["sensitive_action"]  # Pause here
)

# Resume after human approval
result = app.invoke(None, config)  # Continues from checkpoint

6. Subgraphs

# Define inner graph
inner_workflow = StateGraph(InnerState)
inner_workflow.add_node("process", process_node)
inner_workflow.add_edge(START, "process")
inner_workflow.add_edge("process", END)
inner_graph = inner_workflow.compile()

# Use as node in outer graph
outer_workflow = StateGraph(OuterState)
outer_workflow.add_node("subgraph", inner_graph)

7. Streaming

# Stream node outputs
for event in app.stream({"messages": [HumanMessage("Hello")]}):
    for node_name, output in event.items():
        print(f"{node_name}: {output}")

# Stream tokens from LLM
async for event in app.astream_events(input, version="v2"):
    if event["event"] == "on_chat_model_stream":
        print(event["data"]["chunk"].content, end="")

Agent Architectures

ReAct Agent

from langgraph.prebuilt import create_react_agent

agent = create_react_agent(
    model=llm,
    tools=tools,
    state_modifier="You are a helpful assistant."  # System prompt
)

Plan-and-Execute

class PlanExecuteState(TypedDict):
    input: str
    plan: list[str]
    past_steps: list[tuple[str, str]]
    response: str

def planner(state):
    # Generate plan
    plan = plan_chain.invoke({"input": state["input"]})
    return {"plan": plan.steps}

def executor(state):
    # Execute current step
    task = state["plan"][0]
    result = execute_chain.invoke({"task": task})
    return {
        "past_steps": [(task, result)],
        "plan": state["plan"][1:]
    }

def should_end(state):
    return END if not state["plan"] else "executor"

workflow = StateGraph(PlanExecuteState)
workflow.add_node("planner", planner)
workflow.add_node("executor", executor)
workflow.add_edge(START, "planner")
workflow.add_conditional_edges("planner", should_end)
workflow.add_conditional_edges("executor", should_end)

Multi-Agent Supervisor

from langgraph.prebuilt import create_react_agent

# Create specialized agents
researcher = create_react_agent(llm, [search_tool])
coder = create_react_agent(llm, [code_tool])

class SupervisorState(TypedDict):
    messages: Annotated[list, add_messages]
    next: str

def supervisor(state):
    # Decide which agent to call
    decision = router_chain.invoke(state["messages"])
    return {"next": decision.next_agent}

def call_researcher(state):
    result = researcher.invoke({"messages": state["messages"]})
    return {"messages": result["messages"]}

def call_coder(state):
    result = coder.invoke({"messages": state["messages"]})
    return {"messages": result["messages"]}

workflow = StateGraph(SupervisorState)
workflow.add_node("supervisor", supervisor)
workflow.add_node("researcher", call_researcher)
workflow.add_node("coder", call_coder)

workflow.add_edge(START, "supervisor")
workflow.add_conditional_edges("supervisor", lambda s: s["next"])
workflow.add_edge("researcher", "supervisor")
workflow.add_edge("coder", "supervisor")

Best Practices

  1. State Design - Keep state minimal; use add_messages reducer for message accumulation
  2. Node Functions - Return partial state updates, not full state
  3. Conditional Edges - Use for dynamic routing based on state
  4. Checkpointing - Always use for production to enable persistence
  5. Streaming - Use astream_events for real-time UX
  6. Error Handling - Add retry logic in nodes or use fallback edges
  7. Testing - Test nodes individually before composing

Common Patterns

State Reducer

from operator import add
from typing import Annotated

class State(TypedDict):
    items: Annotated[list, add]  # Appends to list
    messages: Annotated[list, add_messages]  # Smart message merging

Parallel Branches

workflow.add_node("branch_a", node_a)
workflow.add_node("branch_b", node_b)
workflow.add_edge(START, "branch_a")
workflow.add_edge(START, "branch_b")  # Both run in parallel
workflow.add_edge("branch_a", "join")
workflow.add_edge("branch_b", "join")

Dynamic Tool Selection

def route_to_tool(state):
    tool_call = state["messages"][-1].tool_calls[0]
    return tool_call["name"]

workflow.add_conditional_edges("agent", route_to_tool, {
    "search": "search_node",
    "calculate": "calc_node"
})

Installation

pip install langgraph
pip install langgraph-checkpoint-sqlite  # For SQLite persistence