Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name admet-prediction
description ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) prediction for drug candidates. Use for assessing drug-likeness, PK properties, and safety risks early in drug discovery. Keywords: ADMET, PK, toxicity, drug-likeness, DILI, hERG, bioavailability
category DMPK
tags admet, pk, toxicity, drug-likeness, safety
version 1.0.0
author Drug Discovery Team
dependencies rdkit, admet-models

ADMET Prediction Skill

Predict ADMET properties to prioritize compounds for development.

Quick Start

/admet "CC1=CC=C(C=C1)CNC" --full
/pk-prediction --library compounds.sdf --threshold 0.7
/toxicity-screen CHEMBL210 --include hERG,DILI,Ames

What's Included

Property Prediction Model
Absorption Caco-2, HIA, Pgp ML/QSAR
Distribution VDss, PPB, BBB ML/QSAR
Metabolism CYP inhibition, clearance ML/QSAR
Excretion Clearance, half-life ML/QSAR
Toxicity hERG, DILI, Ames, mutagenicity ML/QSAR

Output Structure

# ADMET Profile: CHEMBL210 (Osimertinib)

## Summary
| Property | Value | Status |
|----------|-------|--------|
| Drug-likeness | Pass | ✓ |
| Lipinski Ro5 | 0 violations | ✓ |
| VEBER | Pass | ✓ |
| PAINS | 0 alerts | ✓ |
| Brenk | 0 alerts | ✓ |

## Absorption
| Property | Prediction | Confidence |
|----------|------------|-------------|
| HIA | 98% | High |
| Caco-2 | 15.2 × 10⁻⁶ cm/s | High |
| Pgp substrate | Yes | Medium |
| F30% | 65% | Medium |

## Distribution
| Property | Prediction | Confidence |
|----------|------------|-------------|
| VDss | 5.2 L/kg | Medium |
| PPB | 95% | High |
| BBB | Yes | High |
| CNS MPO | 5.5 | Good |

## Metabolism
| Property | Prediction | Confidence |
|----------|------------|-------------|
| CYP3A4 substrate | Yes | High |
| CYP3A4 inhibitor | Yes | Medium |
| CYP2D6 inhibitor | No | High |
| CYP2C9 inhibitor | No | Medium |
| Clearance | 8.5 mL/min/kg | Low |

## Excretion
| Property | Prediction | Confidence |
|----------|------------|-------------|
| Renal clearance | 10% | Medium |
| Half-life | 48 hours | High |

## Toxicity
| Property | Prediction | Confidence |
|----------|------------|-------------|
| hERG inhibition | No | High |
| DILI | Concern | Medium |
| Ames mutagenicity | Negative | High |
| Carcinogenicity | Negative | Medium |
| Respiratory toxicity | No | Low |

## Recommendations
**Strengths**:
- Good oral bioavailability (65%)
- Brain penetration (BBB permeable)
- Low hERG risk

**Concerns**:
- DILI concern - monitor in preclinical studies
- CYP3A4 inhibition - potential DDIs

**Overall**: Good ADMET profile. Progress to in vivo PK.

Property Ranges

Drug-Likeness

Rule Pass Criteria
Lipinski Ro5 ≤ 1 violation
Veber RotB ≤ 10, PSA ≤ 140 Ų
Egan LogP ≤ 5, PSA ≤ 131 Ų
MDDR MW ≤ 600, LogP ≤ 5

Absorption

Property Good Moderate Poor
HIA >80% 40-80% <40%
Caco-2 >10 1-10 <1
F30% >70% 30-70% <30%

Distribution

Property Good Moderate Poor
VDss 0.3-5 L/kg <0.3 or >5 Extreme
PPB <90% 90-95% >95%
BBB LogBB > 0.3 -0.3 to 0.3 < -0.3

Toxicity Alerts

Alert Action
hERG inhibition Cardiotoxicity risk
DILI positive Hepatotoxicity risk
Ames positive Mutagenicity risk
PAINS Assay interference
Structural alerts Investigate further

Running Scripts

# Full ADMET profile
python scripts/admet_predict.py --smiles "CC1=CC=C..." --full

# Batch prediction
python scripts/admet_predict.py --library compounds.sdf --output results.csv

# Specific properties
python scripts/admet_predict.py --smiles "..." --properties hERG,DILI,CYP

# Filter by criteria
python scripts/admet_filter.py --library compounds.sdf --rules lipinski,veber

Requirements

pip install rdkit

# Optional for advanced models
pip install deepchem admet-x

Reference

Best Practices

  1. Use multiple models: Consensus predictions more reliable
  2. Check confidence: Low confidence = experimental verification needed
  3. Consider chemistry: Novel structures less reliable
  4. Iterative design: Use predictions to guide synthesis
  5. Validate early: Confirm key predictions experimentally

Common Pitfalls

Pitfall Solution
Over-reliance on predictions Experimental validation required
Ignoring confidence Check model applicability domain
Single model only Use consensus of multiple models
Ignoring chemistry Novel scaffolds = uncertain predictions
Late-stage testing Early ADMET screening saves time

Limitations

  • Models are approximate: Errors common
  • Novel chemistry: Less reliable for new scaffolds
  • In vitro-in vivo gap: Predictions don't always translate
  • Species differences: Human predictions based on animal data
  • Complex mechanisms: Some toxicity not predicted