Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name compound-profile
description Generate comprehensive compound profiles including structure, properties, bioactivity, and development status. Use for drug analysis, SAR studies, and competitive profiling. Keywords: compound, drug, molecule, structure, SMILES, bioactivity, IC50
category Compound Analysis
tags compound, drug, structure, bioactivity, chembl
version 1.0.0
author Drug Discovery Team
dependencies chembl-database, pubchem-database, drugbank-database

Compound Profile Skill

Comprehensive compound analysis for drug discovery and medicinal chemistry.

Quick Start

/compound erlotinib
/compound-profile CC1=CC=C(C=C1)CNC(=O)C1=NC=C(C=C1)N
Analyze osimertinib properties and bioactivity
Compare gefitinib, erlotinib, afatinib profiles

What's Included

Section Description Data Source
Basic Info Name, type, status, company ChEMBL, DrugBank
Structure SMILES, InChI, molecular weight PubChem, ChEMBL
Properties LogP, HBD, HBA, TPSA, RO5 Calculated, PubChem
Bioactivity Target affinity, IC50, Ki ChEMBL, BindingDB
Development Phase, indications, status Drugs@FDA
Similar Compounds Structure similarity search ChEMBL
Safety Known toxicity, warnings SIDER, PubChem

Output Structure

# Compound Profile: Erlotinib

## Executive Summary
Erlotinib is a first-generation EGFR TKI approved for NSCLC (2004).
Key characteristics: Oral bioavailability, good brain penetration,
resistance mutations limit long-term efficacy.

## Basic Information
| Field | Value |
|-------|-------|
| Name | Erlotinib |
| Brand Names | Tarceva |
| ChEMBL ID | CHEMBL880 |
| Type | Small molecule |
| Class | Kinase inhibitor |
| Status | Approved |
| Approval Year | 2004 |
| Company | Astellas (OSI) |
| Indications | NSCLC, pancreatic cancer |

## Structure & Properties
**SMILES:** `COc1cc2nc(Nc3ccc(Oc4ccc(O)cc4)cc3)nc2cc1OC`

| Property | Value | Rule of 5 Check |
|----------|-------|----------------|
| MW | 393.4 Da | ✓ (<500) |
| LogP | 3.1 | ✓ (<5) |
| HBD | 1 | ✓ (≤5) |
| HBA | 7 | ✓ (≤10) |
| TPSA | 76.3 Ų | ✓ (<140) |
| Rotatable Bonds | 6 | |

## Bioactivity

| Target | Type | Affinity | Units |
|--------|------|----------|-------|
| EGFR | IC50 | 0.5 | nM |
| ERBB2 | IC50 | 1200 | nM |
| LCK | IC50 | 5 | nM |

## Development History
| Year | Milestone |
|------|-----------|
| 2004 | FDA Approval (NSCLC) |
| 2005 | EMEA Approval |
| 2010 | Pancreatic cancer approval |
| 2011 | Generic launch (US) |

## Similar Compounds
| Compound | Similarity | Difference |
|----------|------------|------------|
| Gefitinib | 85% | Different core scaffold |
| Afatinib | 72% | Irreversible binder |
| Osimertinib | 68% | 3rd-gen, mutant-selective |
| Icotinib | 82% | China-approved analog |

## Safety Profile
**Common AEs:** Rash, diarrhea, fatigue, anorexia
**Boxed Warning:** Interstitial lung disease
**Contraindications:** Hypersensitivity to erlotinib

## Patent Status
| Patent | Number | Expiry |
|--------|---------|--------|
| Base patent | US5747498 | 2019 (expired) |
| Formulation | US6943129 | 2020 |
| Method of use | US6900221 | 2021 |

Examples

By Name

/compound erlotinib
/compound-profile sotorasib

By Structure

/compound "CC1=CC=C(C=C1)CNC(=O)C1=NC=C(C=C1)N"
/compound-profile SMILES

Comparison

Compare compounds erlotinib, gefitinib, afatinib
Analyze bioactivity across EGFR inhibitors

Property Analysis

/compound erlotinib --focus properties
Analyze drug-likeness of this compound
Check Lipinski rule of 5 violations

Running Scripts

# Fetch compound by name
python scripts/fetch_compound_data.py erlotinib --output compound.json

# Fetch by SMILES
python scripts/fetch_compound_data.py --smiles "CC1=CC=C..." -o data.json

# Similarity search
python scripts/fetch_compound_data.py --similar CHEMBL880 --threshold 0.7

# Bioactivity summary
python scripts/fetch_compound_data.py erlotinib --bioactivity -o activity.json

# Structure search
python scripts/fetch_compound_data.py --scaffold quinazoline --limit 20

Requirements

pip install requests pandas rdkit

Additional Resources

Best Practices

  1. Use standard names: Generic names preferred over brand
  2. Verify ChEMBL ID: Most reliable identifier
  3. Check bioactivity: Cross-reference multiple sources
  4. Analog analysis: Use similarity searches for SAR
  5. Validate SMILES: Check structure validity

Common Pitfalls

Pitfall Solution
Name ambiguity Use ChEMBL ID when possible
Stereochemistry SMILES may not capture isomerism
Outdated data Check multiple sources
Salt forms API may have multiple entries
Tautomerism Different SMILES for same structure