| name | python-workflow |
| description | Python project workflow guidelines. Triggers: .py, pyproject.toml, uv, pip, pytest, Python. Covers package management, virtual environments, code style, type safety, testing, configuration, CQRS patterns, and Python-specific development tasks. |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
Python Projects Workflow
Guidelines for working with Python projects across different package managers, code styles, and architectural patterns using modern tooling (uv, Python 3.9+).
Tool Grid
| Task | Tool | Command |
|---|---|---|
| Lint | Ruff | uv run ruff check . --fix |
| Format | Ruff | uv run ruff format . |
| Type check | Mypy | uv run mypy src/ |
| Type check | Pyright | uv run pyright |
| Security | Bandit | uv run bandit -r src/ |
| Dead code | Vulture | uv run vulture src/ |
| Coverage | pytest-cov | uv run pytest --cov=src |
| Complexity | Radon | uv run radon cc src/ -a |
CRITICAL: Virtual Environment Best Practices
MUST NOT reference .venv paths manually (e.g., .venv/Scripts/python.exe or ../../../.venv/) - causes cross-platform issues and breaks on structure changes.
MUST use uv run python in uv-based projects (auto-finds venv, works cross-platform, no activation needed):
# BAD: ../../../.venv/Scripts/python.exe script.py
# GOOD: uv run python script.py
uv run python -m module.cli
Prefer shared root .venv unless isolation required (saves ~7GB per environment).
Tooling and Package Management
UV Package Manager (Preferred)
- Use
uvexclusively for modern Python projects - Installation commands:
- Production:
uv add <package> - Development:
uv add --dev <package> - Optional groups:
uv add --group <group-name> <package>(e.g., notebook, docs)
- Production:
- Execution:
uv run python script.pyoruv run pytest - MUST NOT call python/pytest directly - MUST use
uv run - MUST use
uv run pythonin uv-based projects - Run
uv syncbefore executing code in new projects
Alternative: Traditional Tools
- If not using uv, use pip with requirements files
- Maintain
requirements.txtandrequirements-dev.txt - Use virtual environments (
.venv) and activate before operations
General Package Management
- Respect the project's chosen package manager (uv, pip, poetry, pipenv)
- Check
pyproject.tomlfor project configuration - MUST NOT mix package managers in the same project
Python Module CLI Syntax
Use -m flag when running modules as CLIs (tells Python to run module as script, not file):
# GOOD: uv run python -m module.cli
# BAD: uv run python module.cli # fails - treats as file path
Code Style and Formatting
PEP 8 Compliance
- Follow PEP 8 style guide
- Line length: 88 characters (Ruff/Black standard)
- Indentation: 4 spaces per level
- Two blank lines before top-level function/class definitions
- One blank line between methods in a class
Automated Formatters
- Ruff - Primary tool for linting AND formatting (replaces Black, isort, flake8)
- Linting:
uv run ruff check . --fix - Formatting:
uv run ruff format .
- Linting:
- Configure in
pyproject.tomlunder[tool.ruff] - Use
ruff.tomlfor standalone configuration
Style Guidelines
- Follow project's existing style (check
pyproject.toml,.editorconfig) - Default to PEP 8 if no project style defined
- Use type hints when writing new Python code
- Prefer f-strings over
.format()or%formatting
Configuration Files
Check these files for style preferences:
pyproject.toml- Modern Python project configurationruff.toml- Ruff-specific configuration.editorconfig- Editor-agnostic style settings
Example Formatting
from typing import Any
import pandas as pd
from pydantic import BaseModel
class DataModel(BaseModel):
"""Example data model with proper spacing."""
field_one: str
field_two: int
def process_data(input_data: list[dict[str, Any]]) -> pd.DataFrame:
"""
Process input data and return DataFrame.
Args:
input_data: List of dictionaries containing raw data
Returns:
Processed pandas DataFrame
"""
return pd.DataFrame(input_data)
Type Safety and Annotations
Type Hints
- Strong type hints for all parameters and return values
- Use modern generic types:
list[str],dict[str, Any](Python 3.9+) - For older Python:
from typing import List, Dict - Use
typingmodule for complex types:Union,Optional,Literal,Protocol
Data Validation
- Use Pydantic for data validation and serialization
- Use
dataclassesfor simple data containers when Pydantic is overkill - Use
attrsfor enhanced dataclasses if preferred
Example Type Usage
from typing import Any, Protocol
from pydantic import BaseModel
class Repository(Protocol):
"""Protocol defining repository interface."""
def get(self, id: str) -> dict[str, Any] | None:
...
class User(BaseModel):
"""User model with validation."""
username: str
email: str
age: int | None = None
def fetch_user(repo: Repository, user_id: str) -> User | None:
"""Fetch user from repository with type safety."""
data = repo.get(user_id)
return User(**data) if data else None
Naming Conventions
Standard Conventions
- Class names: PascalCase (
UserService,DatabaseConnection) - Function/variable names: snake_case (
get_user_data,connection_pool) - Constants: UPPER_SNAKE_CASE (
MAX_RETRIES,DEFAULT_TIMEOUT) - Private methods/variables: Leading underscore (
_internal_method,_cache)
Critical: Avoid Test Name Conflicts
- MUST NOT name classes with "Test" prefix unless they are actual pytest test classes
- Use descriptive names:
MockComponent,HelperClass,UtilityFunctioninstead ofTestComponent - Pytest collects classes starting with "Test" as test classes, causing confusion
File Naming
- Python files SHOULD be snake_case version of the primary class
- Examples:
DNSRecordHandler→dns_record_handler.pyComponentFactory→component_factory.py
- For modules with multiple classes or functional code, name for the module's purpose
Documentation and Comments
Docstrings (PEP 257)
- Provide docstrings for all public modules, classes, and functions
- Use triple quotes:
"""Docstring text.""" - First line: brief summary (ends with period)
- Detailed description after blank line if needed
- Document parameters, return values, and exceptions
Comment Philosophy
- Comment to explain WHY, not WHAT
- Prefer clear names and structure over comments
- Use comments for complex business logic, algorithms, and non-obvious decisions
- Avoid obvious, redundant, or outdated comments
Example Documentation
def calculate_compound_interest(
principal: float,
rate: float,
time: int,
compound_frequency: int = 1
) -> float:
"""
Calculate compound interest using the standard formula.
Args:
principal: Initial amount invested
rate: Annual interest rate as decimal (e.g., 0.05 for 5%)
time: Time period in years
compound_frequency: Times per year interest compounds (default: 1)
Returns:
Final amount after compound interest
Raises:
ValueError: If principal, rate, or time is negative
"""
if principal < 0 or rate < 0 or time < 0:
raise ValueError("Values must be non-negative")
# Using compound interest formula: A = P(1 + r/n)^(nt)
return principal * (1 + rate / compound_frequency) ** (compound_frequency * time)
Error Handling
Exception Best Practices
- Use specific exception types (ValueError, KeyError) over generic Exception
- Provide meaningful error messages that help debugging
- Use Python's
loggingmodule with structured logging - Handle edge cases explicitly (empty inputs, None values, invalid types)
- CRITICAL: MUST NOT remove public methods for lint fixes - preserve API stability
Example Error Handling
import logging
logger = logging.getLogger(__name__)
def process_user_data(user_id: str) -> dict[str, Any]:
"""
Process user data with proper error handling.
Args:
user_id: Unique user identifier
Returns:
Processed user data dictionary
Raises:
ValueError: If user_id is empty or invalid format
UserNotFoundError: If user doesn't exist
"""
if not user_id or not user_id.strip():
raise ValueError("user_id cannot be empty")
try:
user = fetch_user(user_id)
if user is None:
raise UserNotFoundError(f"User {user_id} not found")
return process(user)
except DatabaseError as e:
logger.error(f"Database error processing user {user_id}: {e}")
raise
Project Structure
Package Organization
- Include
__init__.pyin all packages - Use
__init__.pyto control package exports - Structure DTOs and handlers logically
- Separate concerns: models, services, repositories, controllers
Recommended Directory Structure
project/
├── src/
│ └── app/
│ ├── __init__.py # Export main app components
│ ├── core/ # Core business logic
│ │ ├── __init__.py
│ │ ├── commands.py # Command DTOs
│ │ └── queries.py # Query DTOs
│ ├── services/ # Business services
│ │ ├── __init__.py
│ │ └── user_service.py
│ ├── repositories/ # Data access
│ │ ├── __init__.py
│ │ └── user_repository.py
│ ├── models/ # Data models
│ │ ├── __init__.py
│ │ └── user.py
│ └── handlers/ # Request handlers
│ ├── __init__.py
│ └── user_handler.py
├── tests/ # Test files
│ ├── __init__.py
│ ├── unit/
│ ├── integration/
│ └── fixtures/
├── pyproject.toml # Project configuration
└── README.md
Import Patterns
- Use relative imports within packages:
from .models import User - Use absolute imports from other packages:
from app.services import UserService - Avoid circular imports through careful module organization
Configuration Management
Environment Variables
- Use python-dotenv for development: load from
.envfiles - Use
os.getenv()with sensible defaults - Validate configuration at startup
- MUST NOT commit
.envfiles to version control
Configuration Classes
from pydantic import BaseModel, Field
import os
class AppConfig(BaseModel):
"""Application configuration with validation."""
debug: bool = Field(default=False)
database_url: str = Field(...)
max_connections: int = Field(default=10, ge=1, le=100)
@classmethod
def from_env(cls) -> "AppConfig":
"""Load configuration from environment variables."""
return cls(
debug=os.getenv("DEBUG", "false").lower() == "true",
database_url=os.getenv("DATABASE_URL", ""),
max_connections=int(os.getenv("MAX_CONNECTIONS", "10"))
)
File Management
Working with File Paths
- Use
pathlib.Pathfor cross-platform path handling - Avoid hardcoded paths; use
os.path.expanduser('~/')for home directories - MUST handle file encoding explicitly (UTF-8 default)
- Properly close files or use context managers (
withstatement)
Example File Operations
from pathlib import Path
# Read file
config_path = Path.home() / '.config' / 'app.json'
if config_path.exists():
content = config_path.read_text(encoding='utf-8')
# Write file with context manager
output_path = Path('output.txt')
with output_path.open('w', encoding='utf-8') as f:
f.write('content')
Testing and Quality
Testing Strategy
- Write tests for critical paths and public APIs
- Use pytest as the primary test framework
- Organize tests:
tests/unit/,tests/integration/ - Test edge cases: empty inputs, None values, large datasets
- Use fixtures for reusable test setup
- Use
pytest.markfor test categorization - Maintain >80% code coverage for critical paths
Quality Tools
- Ruff - Linting and formatting (primary)
- pytest - Test framework
- pytest-cov - Code coverage measurement
- mypy/pyright - Static type checking
- bandit - Security scanning
Example Test with Fixtures
import pytest
from app.services import UserService
@pytest.fixture
def user_service():
"""Provide UserService instance for tests."""
return UserService()
@pytest.fixture
def sample_user():
"""Provide sample user data."""
return {"id": "user123", "name": "John Doe"}
def test_get_user_success(user_service):
"""Test successful user retrieval."""
user = user_service.get_user("user123")
assert user is not None
assert user.id == "user123"
def test_get_user_not_found(user_service):
"""Test user not found raises appropriate exception."""
with pytest.raises(UserNotFoundError):
user_service.get_user("nonexistent")
def test_create_user(user_service, sample_user):
"""Test user creation with fixture data."""
user = user_service.create_user(sample_user)
assert user.name == "John Doe"
Special Patterns
Flask/FastAPI Applications
- Structure with
app/package using__init__.pyexports - Use blueprints/routers for route organization
- Implement health check endpoints (
/health,/status) - Use Pydantic for request/response models
- Disable debug mode in production
- Separate routes from business logic
Command/Query Patterns (CQRS)
- Separate Commands (write operations) and Queries (read operations)
- Use command/query buses for dispatch
- Define DTOs as dataclasses or Pydantic models
- Implement handlers separately from business logic
- Example structure:
core/commands.py- Command DTOscore/queries.py- Query DTOshandlers/command_handler.py- Command processinghandlers/query_handler.py- Query processing
Async/Await
- Use
async deffor I/O-bound operations - Use
awaitfor async calls - Use
asynciofor concurrent operations - Be aware of event loop management
- Example:
import asyncio
async def fetch_data(url: str) -> dict:
"""Fetch data asynchronously."""
# Use aiohttp or similar for actual HTTP calls
await asyncio.sleep(1)
return {"status": "success"}
async def main():
"""Run multiple async operations concurrently."""
results = await asyncio.gather(
fetch_data("url1"),
fetch_data("url2")
)
return results
Common Patterns
Project Structure Recognition
pyproject.toml- Modern Python project (PEP 518)requirements.txt- Pip dependenciessetup.py- Package definition (legacy or hybrid)Pipfile- Pipenv projectspoetry.lock- Poetry projectsuv.lock- UV projects
Testing Framework Detection
- Respect existing test framework (pytest, unittest, nose)
- Look for test configuration in
pyproject.tomlorpytest.ini - Use project's test runner:
uv run pytest,poetry run pytest, etc.
Out of Scope
- Django specifics → see
django-workflow - FastAPI specifics → see
fastapi-workflow - Flask specifics → see
flask-workflow - Database migrations → see
database-workflow
Quick Reference
Package managers:
- UV:
uv run,uv sync,uv add,uv add --dev - Poetry:
poetry run,poetry install,poetry add - Pip:
pip install,python -m pip
Key rules:
- MUST use
uv run python(MUST NOT use manual .venv paths) - MUST use
-mflag for module CLIs - MUST check
pyproject.tomlfor config - MUST use strong type hints for all parameters/returns
- MUST separate concerns: models, services, repositories
- SHOULD use Pydantic for validation
- SHOULD use pytest with fixtures
- MUST NOT mix package managers
- MUST NOT remove public methods for lint fixes
- MUST NOT name helper classes with "Test" prefix
Note: For project-specific Python patterns, check .claude/CLAUDE.md in the project directory.