| name | nixtla-demo-generator |
| description | Generate production-ready Jupyter notebooks showcasing Nixtla forecasting workflows for statsforecast, mlforecast, and TimeGPT. Use when creating demos, building examples, or showcasing forecasting capabilities. Trigger with 'generate demo notebook', 'create Jupyter demo', or 'build forecasting example'. |
| allowed-tools | Write,Read,Glob,Bash(python:*) |
| version | 1.0.0 |
| author | Jeremy Longshore <jeremy@intentsolutions.io> |
| license | MIT |
Nixtla Demo Generator
Generate interactive, production-ready Jupyter notebooks that showcase Nixtla forecasting workflows with complete data pipelines, model training, evaluation, and visualization.
Overview
This skill creates high-quality demonstration notebooks:
- Three library support: StatsForecast, MLForecast, TimeGPT
- Complete workflows: Data loading, preprocessing, model training, forecasting, evaluation, visualization
- Production patterns: Best practices, error handling, performance optimization
- Instant demos: Ready for Nixtla CEO presentations, customer POCs, and documentation
- Customizable templates: Modify for specific use cases and datasets
Prerequisites
Required:
- Python 3.8+
- Jupyter notebook (
pip install jupyter) - At least one Nixtla library:
statsforecast- Statistical models (ARIMA, ETS, etc.)mlforecast- Machine learning models (LightGBM, XGBoost)nixtla- TimeGPT API access
Optional:
NIXTLA_API_KEY: For TimeGPT demos- Sample datasets (M4, custom time series)
Installation:
pip install jupyter statsforecast mlforecast nixtla pandas matplotlib
Instructions
Step 1: Choose Library
Select which Nixtla library to demonstrate:
# Options: statsforecast, mlforecast, timegpt
export DEMO_LIBRARY=statsforecast
Step 2: Generate Notebook
Run the generator script:
python {baseDir}/scripts/generate_demo_notebook.py \
--library statsforecast \
--dataset m4-daily \
--output demo_statsforecast_m4.ipynb
Step 3: Customize (Optional)
Edit the generated notebook to:
- Add custom datasets
- Modify model configurations
- Adjust visualizations
- Include domain-specific context
Step 4: Execute Notebook
Run the generated notebook:
jupyter notebook demo_statsforecast_m4.ipynb
Or execute non-interactively:
jupyter nbconvert --to notebook --execute demo_statsforecast_m4.ipynb
Step 5: Export Results
Export to various formats:
# HTML for sharing
jupyter nbconvert --to html demo_statsforecast_m4.ipynb
# PDF for presentations
jupyter nbconvert --to pdf demo_statsforecast_m4.ipynb
# Python script for automation
jupyter nbconvert --to python demo_statsforecast_m4.ipynb
Output
- [library]_demo.ipynb: Complete Jupyter notebook with:
- Introduction and setup
- Data loading and exploration
- Model configuration
- Training and forecasting
- Evaluation metrics (SMAPE, MASE, MAE)
- Visualizations (forecasts, residuals, comparisons)
- Next steps and resources
Error Handling
Error:
ModuleNotFoundError: No module named 'statsforecast'Solution: Install required library:pip install statsforecast mlforecast nixtlaError:
NIXTLA_API_KEY not set(TimeGPT demos) Solution: Export API key:export NIXTLA_API_KEY=your_keyor skip TimeGPT demoError:
Dataset file not foundSolution: Use--generate-sample-dataflag to create synthetic datasetError:
nbformat.validator.ValidationErrorSolution: Check Jupyter version compatibility:pip install --upgrade jupyter nbformatError:
Kernel died while executing notebookSolution: Reduce dataset size or increase memory allocation
Examples
Example 1: StatsForecast M4 Daily Demo
python {baseDir}/scripts/generate_demo_notebook.py \
--library statsforecast \
--dataset m4-daily \
--models AutoETS,AutoARIMA,SeasonalNaive \
--horizon 14 \
--output demo_statsforecast_m4_daily.ipynb
Generated notebook includes:
# Import libraries
from statsforecast import StatsForecast
from statsforecast.models import AutoETS, AutoARIMA, SeasonalNaive
import pandas as pd
import matplotlib.pyplot as plt
# Load M4 Daily data
df = pd.read_csv('m4_daily_sample.csv')
print(f"Loaded {len(df)} rows, {df['unique_id'].nunique()} series")
# Configure models
sf = StatsForecast(
models=[AutoETS(), AutoARIMA(), SeasonalNaive(season_length=7)],
freq='D',
n_jobs=-1
)
# Generate forecasts
forecasts = sf.forecast(df=df, h=14)
# Evaluate
from statsforecast.utils import calculate_metrics
metrics = calculate_metrics(df, forecasts, metrics=['smape', 'mase'])
print(metrics)
# Visualize
sf.plot(df, forecasts)
plt.show()
Example 2: MLForecast with Exogenous Features
python {baseDir}/scripts/generate_demo_notebook.py \
--library mlforecast \
--dataset retail-sales \
--models LightGBM,XGBoost \
--features lag,rolling_mean,date_features \
--output demo_mlforecast_retail.ipynb
Generated notebook features:
- Lag features (1, 7, 14 days)
- Rolling statistics (mean, std, min, max)
- Date features (day of week, month, is_weekend)
- LightGBM and XGBoost model comparison
- Feature importance plots
Example 3: TimeGPT API Demo
python {baseDir}/scripts/generate_demo_notebook.py \
--library timegpt \
--dataset custom \
--api-key $NIXTLA_API_KEY \
--horizon 30 \
--confidence-levels 80,90,95 \
--output demo_timegpt_api.ipynb
Generated notebook demonstrates:
- TimeGPT API client initialization
- Data upload and validation
- Forecast generation with confidence intervals
- Probabilistic forecasting
- Anomaly detection integration
Example 4: Batch Generate All Three Libraries
for library in statsforecast mlforecast timegpt; do
python {baseDir}/scripts/generate_demo_notebook.py \
--library $library \
--dataset m4-hourly \
--output "demo_${library}_m4_hourly.ipynb"
done
Example 5: Custom Template with Branding
python {baseDir}/scripts/generate_demo_notebook.py \
--library statsforecast \
--dataset m4-weekly \
--template {baseDir}/assets/templates/custom_branded_template.ipynb \
--logo company_logo.png \
--output demo_branded.ipynb
Resources
- StatsForecast Docs: https://nixtla.github.io/statsforecast/
- MLForecast Docs: https://nixtla.github.io/mlforecast/
- TimeGPT Docs: https://docs.nixtla.io/
- Jupyter Tutorial: https://jupyter.org/try
- M4 Competition: https://github.com/Mcompetitions/M4-methods
Related Skills:
nixtla-timegpt-lab: Interactive TimeGPT experimentationnixtla-experiment-architect: Multi-model experiment designnixtla-schema-mapper: Data transformation for Nixtla format
Scripts:
{baseDir}/scripts/generate_demo_notebook.py: Main notebook generator{baseDir}/assets/templates/statsforecast_template.ipynb: StatsForecast base template{baseDir}/assets/templates/mlforecast_template.ipynb: MLForecast base template{baseDir}/assets/templates/timegpt_template.ipynb: TimeGPT base template