Claude Code Plugins

Community-maintained marketplace

Feedback

Running and fine-tuning LLMs on Apple Silicon with MLX. Use when working with models locally on Mac, converting Hugging Face models to MLX format, fine-tuning with LoRA/QLoRA on Apple Silicon, or serving models via HTTP API.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mlx
description Running and fine-tuning LLMs on Apple Silicon with MLX. Use when working with models locally on Mac, converting Hugging Face models to MLX format, fine-tuning with LoRA/QLoRA on Apple Silicon, or serving models via HTTP API.

Using MLX for LLMs on Apple Silicon

MLX-LM is a Python package for running large language models on Apple Silicon, leveraging the MLX framework for optimized performance with unified memory architecture.

Table of Contents

Core Concepts

Why MLX

Aspect PyTorch on Mac MLX
Memory Separate CPU/GPU copies Unified memory, no copies
Optimization Generic Metal backend Apple Silicon native
Model loading Slower, more memory Lazy loading, efficient
Quantization Limited support Built-in 4/8-bit

MLX arrays live in shared memory, accessible by both CPU and GPU without data transfer overhead.

Supported Models

MLX-LM supports most popular architectures: Llama, Mistral, Qwen, Phi, Gemma, Cohere, and many more. Check the mlx-community on Hugging Face for pre-converted models.

Installation

pip install mlx-lm

Requires macOS 13.5+ and Apple Silicon (M1/M2/M3/M4).

Text Generation

Python API

from mlx_lm import load, generate

# Load model (from HF hub or local path)
model, tokenizer = load("mlx-community/Llama-3.2-3B-Instruct-4bit")

# Generate text
response = generate(
    model,
    tokenizer,
    prompt="Explain quantum computing in simple terms:",
    max_tokens=256,
    temp=0.7,
)
print(response)

Streaming Generation

from mlx_lm import load, stream_generate

model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")

prompt = "Write a haiku about programming:"
for response in stream_generate(model, tokenizer, prompt, max_tokens=100):
    print(response.text, end="", flush=True)
print()

Batch Generation

from mlx_lm import load, batch_generate

model, tokenizer = load("mlx-community/Qwen2.5-7B-Instruct-4bit")

prompts = [
    "What is machine learning?",
    "Explain neural networks:",
    "Define deep learning:",
]

responses = batch_generate(
    model,
    tokenizer,
    prompts,
    max_tokens=100,
)

for prompt, response in zip(prompts, responses):
    print(f"Q: {prompt}\nA: {response}\n")

CLI Generation

# Basic generation
mlx_lm.generate --model mlx-community/Llama-3.2-3B-Instruct-4bit \
    --prompt "Explain recursion:" \
    --max-tokens 256

# With sampling parameters
mlx_lm.generate --model mlx-community/Mistral-7B-Instruct-v0.3-4bit \
    --prompt "Write a poem about AI:" \
    --temp 0.8 \
    --top-p 0.95

Interactive Chat

CLI Chat

# Start chat REPL (context preserved between turns)
mlx_lm.chat --model mlx-community/Llama-3.2-3B-Instruct-4bit

Python Chat

from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Llama-3.2-3B-Instruct-4bit")

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What's the capital of France?"},
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

response = generate(model, tokenizer, prompt=prompt, max_tokens=256)
print(response)

Model Conversion

Convert Hugging Face models to MLX format:

CLI Conversion

# Convert with 4-bit quantization
mlx_lm.convert --hf-path meta-llama/Llama-3.2-3B-Instruct \
    -q  # Quantize to 4-bit

# With specific quantization
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 \
    -q \
    --q-bits 8 \
    --q-group-size 64

# Upload to Hugging Face Hub
mlx_lm.convert --hf-path meta-llama/Llama-3.2-1B-Instruct \
    -q \
    --upload-repo your-username/Llama-3.2-1B-Instruct-4bit-mlx

Python Conversion

from mlx_lm import convert

convert(
    hf_path="meta-llama/Llama-3.2-3B-Instruct",
    mlx_path="./llama-3.2-3b-mlx",
    quantize=True,
    q_bits=4,
    q_group_size=64,
)

Conversion Options

Option Default Description
--q-bits 4 Quantization bits (4 or 8)
--q-group-size 64 Group size for quantization
--dtype float16 Data type for non-quantized weights

Quantization

MLX supports multiple quantization methods for different use cases:

Method Best For Command
Basic Quick conversion mlx_lm.convert -q
DWQ Quality-preserving mlx_lm.dwq
AWQ Activation-aware mlx_lm.awq
Dynamic Per-layer precision mlx_lm.dynamic_quant
GPTQ Established method mlx_lm.gptq

Quick Quantization

# 4-bit quantization during conversion
mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.3 -q

# 8-bit for higher quality
mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.3 -q --q-bits 8

For detailed coverage of each method, see reference/quantization.md.

Fine-tuning with LoRA

MLX supports LoRA and QLoRA fine-tuning for efficient adaptation on Apple Silicon.

Quick Start

# Prepare training data (JSONL format)
# {"text": "Your training text here"}
# or
# {"messages": [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}

# Fine-tune with LoRA
mlx_lm.lora --model mlx-community/Llama-3.2-3B-Instruct-4bit \
    --train \
    --data ./data \
    --iters 1000

# Generate with adapter
mlx_lm.generate --model mlx-community/Llama-3.2-3B-Instruct-4bit \
    --adapter-path ./adapters \
    --prompt "Your prompt here"

Fuse Adapter into Model

# Merge LoRA weights into base model
mlx_lm.fuse --model mlx-community/Llama-3.2-3B-Instruct-4bit \
    --adapter-path ./adapters \
    --save-path ./fused-model

# Or export to GGUF
mlx_lm.fuse --model mlx-community/Llama-3.2-3B-Instruct-4bit \
    --adapter-path ./adapters \
    --export-gguf

For detailed LoRA configuration and training patterns, see reference/fine-tuning.md.

Serving Models

OpenAI-Compatible Server

# Start server
mlx_lm.server --model mlx-community/Llama-3.2-3B-Instruct-4bit --port 8080

# Use with OpenAI client
curl http://localhost:8080/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "default",
        "messages": [{"role": "user", "content": "Hello!"}],
        "max_tokens": 256
    }'

Python Client

from openai import OpenAI

client = OpenAI(base_url="http://localhost:8080/v1", api_key="not-needed")

response = client.chat.completions.create(
    model="default",
    messages=[{"role": "user", "content": "Explain MLX in one sentence."}],
    max_tokens=100,
)
print(response.choices[0].message.content)

Best Practices

  1. Use pre-quantized models: Download from mlx-community on Hugging Face for immediate use

  2. Match quantization to your hardware: M1/M2 with 8GB: use 4-bit; M2/M3 Pro/Max: 8-bit for quality

  3. Leverage unified memory: Unlike CUDA, MLX models can exceed "GPU memory" by using swap (slower but works)

  4. Use streaming for UX: stream_generate provides responsive output for interactive applications

  5. Cache prompt prefixes: Use mlx_lm.cache_prompt for repeated prompts with varying suffixes

  6. Batch similar requests: batch_generate is more efficient than sequential generation

  7. Start with 4-bit quantization: Good quality/size tradeoff; upgrade to 8-bit if quality issues

  8. Fuse adapters for deployment: After fine-tuning, fuse adapters for faster inference without loading separately

  9. Monitor memory with Activity Monitor: Watch memory pressure to avoid swap thrashing

  10. Use chat templates: Always apply tokenizer.apply_chat_template() for instruction-tuned models

References

See reference/ for detailed documentation:

  • quantization.md - Detailed quantization methods and when to use each
  • fine-tuning.md - Complete LoRA/QLoRA training guide with data formats and configuration