| name | mlx |
| description | Running and fine-tuning LLMs on Apple Silicon with MLX. Use when working with models locally on Mac, converting Hugging Face models to MLX format, fine-tuning with LoRA/QLoRA on Apple Silicon, or serving models via HTTP API. |
Using MLX for LLMs on Apple Silicon
MLX-LM is a Python package for running large language models on Apple Silicon, leveraging the MLX framework for optimized performance with unified memory architecture.
Table of Contents
- Core Concepts
- Installation
- Text Generation
- Interactive Chat
- Model Conversion
- Quantization
- Fine-tuning with LoRA
- Serving Models
- Best Practices
- References
Core Concepts
Why MLX
| Aspect | PyTorch on Mac | MLX |
|---|---|---|
| Memory | Separate CPU/GPU copies | Unified memory, no copies |
| Optimization | Generic Metal backend | Apple Silicon native |
| Model loading | Slower, more memory | Lazy loading, efficient |
| Quantization | Limited support | Built-in 4/8-bit |
MLX arrays live in shared memory, accessible by both CPU and GPU without data transfer overhead.
Supported Models
MLX-LM supports most popular architectures: Llama, Mistral, Qwen, Phi, Gemma, Cohere, and many more. Check the mlx-community on Hugging Face for pre-converted models.
Installation
pip install mlx-lm
Requires macOS 13.5+ and Apple Silicon (M1/M2/M3/M4).
Text Generation
Python API
from mlx_lm import load, generate
# Load model (from HF hub or local path)
model, tokenizer = load("mlx-community/Llama-3.2-3B-Instruct-4bit")
# Generate text
response = generate(
model,
tokenizer,
prompt="Explain quantum computing in simple terms:",
max_tokens=256,
temp=0.7,
)
print(response)
Streaming Generation
from mlx_lm import load, stream_generate
model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")
prompt = "Write a haiku about programming:"
for response in stream_generate(model, tokenizer, prompt, max_tokens=100):
print(response.text, end="", flush=True)
print()
Batch Generation
from mlx_lm import load, batch_generate
model, tokenizer = load("mlx-community/Qwen2.5-7B-Instruct-4bit")
prompts = [
"What is machine learning?",
"Explain neural networks:",
"Define deep learning:",
]
responses = batch_generate(
model,
tokenizer,
prompts,
max_tokens=100,
)
for prompt, response in zip(prompts, responses):
print(f"Q: {prompt}\nA: {response}\n")
CLI Generation
# Basic generation
mlx_lm.generate --model mlx-community/Llama-3.2-3B-Instruct-4bit \
--prompt "Explain recursion:" \
--max-tokens 256
# With sampling parameters
mlx_lm.generate --model mlx-community/Mistral-7B-Instruct-v0.3-4bit \
--prompt "Write a poem about AI:" \
--temp 0.8 \
--top-p 0.95
Interactive Chat
CLI Chat
# Start chat REPL (context preserved between turns)
mlx_lm.chat --model mlx-community/Llama-3.2-3B-Instruct-4bit
Python Chat
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama-3.2-3B-Instruct-4bit")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the capital of France?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, max_tokens=256)
print(response)
Model Conversion
Convert Hugging Face models to MLX format:
CLI Conversion
# Convert with 4-bit quantization
mlx_lm.convert --hf-path meta-llama/Llama-3.2-3B-Instruct \
-q # Quantize to 4-bit
# With specific quantization
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 \
-q \
--q-bits 8 \
--q-group-size 64
# Upload to Hugging Face Hub
mlx_lm.convert --hf-path meta-llama/Llama-3.2-1B-Instruct \
-q \
--upload-repo your-username/Llama-3.2-1B-Instruct-4bit-mlx
Python Conversion
from mlx_lm import convert
convert(
hf_path="meta-llama/Llama-3.2-3B-Instruct",
mlx_path="./llama-3.2-3b-mlx",
quantize=True,
q_bits=4,
q_group_size=64,
)
Conversion Options
| Option | Default | Description |
|---|---|---|
--q-bits |
4 | Quantization bits (4 or 8) |
--q-group-size |
64 | Group size for quantization |
--dtype |
float16 | Data type for non-quantized weights |
Quantization
MLX supports multiple quantization methods for different use cases:
| Method | Best For | Command |
|---|---|---|
| Basic | Quick conversion | mlx_lm.convert -q |
| DWQ | Quality-preserving | mlx_lm.dwq |
| AWQ | Activation-aware | mlx_lm.awq |
| Dynamic | Per-layer precision | mlx_lm.dynamic_quant |
| GPTQ | Established method | mlx_lm.gptq |
Quick Quantization
# 4-bit quantization during conversion
mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.3 -q
# 8-bit for higher quality
mlx_lm.convert --hf-path mistralai/Mistral-7B-v0.3 -q --q-bits 8
For detailed coverage of each method, see reference/quantization.md.
Fine-tuning with LoRA
MLX supports LoRA and QLoRA fine-tuning for efficient adaptation on Apple Silicon.
Quick Start
# Prepare training data (JSONL format)
# {"text": "Your training text here"}
# or
# {"messages": [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}
# Fine-tune with LoRA
mlx_lm.lora --model mlx-community/Llama-3.2-3B-Instruct-4bit \
--train \
--data ./data \
--iters 1000
# Generate with adapter
mlx_lm.generate --model mlx-community/Llama-3.2-3B-Instruct-4bit \
--adapter-path ./adapters \
--prompt "Your prompt here"
Fuse Adapter into Model
# Merge LoRA weights into base model
mlx_lm.fuse --model mlx-community/Llama-3.2-3B-Instruct-4bit \
--adapter-path ./adapters \
--save-path ./fused-model
# Or export to GGUF
mlx_lm.fuse --model mlx-community/Llama-3.2-3B-Instruct-4bit \
--adapter-path ./adapters \
--export-gguf
For detailed LoRA configuration and training patterns, see reference/fine-tuning.md.
Serving Models
OpenAI-Compatible Server
# Start server
mlx_lm.server --model mlx-community/Llama-3.2-3B-Instruct-4bit --port 8080
# Use with OpenAI client
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 256
}'
Python Client
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8080/v1", api_key="not-needed")
response = client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Explain MLX in one sentence."}],
max_tokens=100,
)
print(response.choices[0].message.content)
Best Practices
Use pre-quantized models: Download from
mlx-communityon Hugging Face for immediate useMatch quantization to your hardware: M1/M2 with 8GB: use 4-bit; M2/M3 Pro/Max: 8-bit for quality
Leverage unified memory: Unlike CUDA, MLX models can exceed "GPU memory" by using swap (slower but works)
Use streaming for UX:
stream_generateprovides responsive output for interactive applicationsCache prompt prefixes: Use
mlx_lm.cache_promptfor repeated prompts with varying suffixesBatch similar requests:
batch_generateis more efficient than sequential generationStart with 4-bit quantization: Good quality/size tradeoff; upgrade to 8-bit if quality issues
Fuse adapters for deployment: After fine-tuning, fuse adapters for faster inference without loading separately
Monitor memory with Activity Monitor: Watch memory pressure to avoid swap thrashing
Use chat templates: Always apply
tokenizer.apply_chat_template()for instruction-tuned models
References
See reference/ for detailed documentation:
quantization.md- Detailed quantization methods and when to use eachfine-tuning.md- Complete LoRA/QLoRA training guide with data formats and configuration