| name | qlora |
| description | Memory-efficient fine-tuning with 4-bit quantization and LoRA adapters. Use when fine-tuning large models (7B+) on consumer GPUs, when VRAM is limited, or when standard LoRA still exceeds memory. Builds on the lora skill. |
QLoRA: Quantized Low-Rank Adaptation
QLoRA enables fine-tuning of large language models on consumer GPUs by combining 4-bit quantization with LoRA adapters. A 65B model can be fine-tuned on a single 48GB GPU while matching 16-bit fine-tuning performance.
Prerequisites: This skill assumes familiarity with LoRA. See the
loraskill for LoRA fundamentals (LoraConfig, target_modules, training patterns).
Table of Contents
- Core Innovations
- BitsAndBytesConfig Deep Dive
- Memory Requirements
- Complete Training Example
- Inference and Merging
- Troubleshooting
- Best Practices
Core Innovations
QLoRA introduces three techniques that reduce memory usage without sacrificing performance:
4-bit NormalFloat (NF4)
NF4 is an information-theoretically optimal quantization data type for normally distributed weights. Neural network weights are typically normally distributed, making NF4 more efficient than standard 4-bit floats.
Storage: 4-bit NF4 (quantized weights)
Compute: 16-bit BF16 (dequantized for forward/backward pass)
The key insight: weights are stored in 4-bit but dequantized to bf16 for computation. Only the frozen base model is quantized; LoRA adapters remain in full precision.
NF4 vs FP4:
| Quantization | Description | Use Case |
|---|---|---|
nf4 |
Normalized Float 4-bit, optimal for normal distributions | Default, recommended |
fp4 |
Standard 4-bit float | Legacy, rarely needed |
Double Quantization
Standard quantization requires storing scaling constants (typically fp32) for each quantization block. Double quantization quantizes these constants too:
First quantization: weights → 4-bit + fp32 scaling constants
Double quantization: scaling constants → 8-bit + fp32 second-level constants
This saves approximately 0.37 bits per parameter—significant for billion-parameter models:
- 7B model: ~325 MB savings
- 70B model: ~3.2 GB savings
Paged Optimizers
During training, gradient checkpointing can cause memory spikes when processing long sequences. Paged optimizers use NVIDIA unified memory to automatically transfer optimizer states between GPU and CPU:
Normal training: OOM on memory spike
Paged optimizers: GPU ↔ CPU transfer handles spikes gracefully
This is handled automatically by bitsandbytes when using 4-bit training.
BitsAndBytesConfig Deep Dive
All Parameters Explained
from transformers import BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
# Core 4-bit settings
load_in_4bit=True, # Enable 4-bit quantization
bnb_4bit_quant_type="nf4", # "nf4" (recommended) or "fp4"
# Double quantization
bnb_4bit_use_double_quant=True, # Quantize the quantization constants
# Compute precision
bnb_4bit_compute_dtype=torch.bfloat16, # Dequantize to this dtype for compute
# Optional: specific storage type (usually auto-detected)
bnb_4bit_quant_storage=torch.uint8, # Storage dtype for quantized weights
)
Compute Dtype Selection
| Dtype | Hardware | Notes |
|---|---|---|
torch.bfloat16 |
Ampere+ (RTX 30xx, A100) | Recommended, faster |
torch.float16 |
Older GPUs (V100, RTX 20xx) | Use if bf16 not supported |
torch.float32 |
Any | Slower, only for debugging |
Check bf16 support:
import torch
print(torch.cuda.is_bf16_supported()) # True on Ampere+
Comparison: Quantization Options
# Recommended: NF4 + double quant + bf16
optimal_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Maximum memory savings (slightly slower)
max_savings_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16, # fp16 uses less memory than bf16
)
# 8-bit alternative (less compression, sometimes more stable)
eight_bit_config = BitsAndBytesConfig(
load_in_8bit=True,
)
Memory Requirements
| Model Size | Full Fine-tuning | LoRA (16-bit) | QLoRA (4-bit) |
|---|---|---|---|
| 7B | ~60 GB | ~16 GB | ~6 GB |
| 13B | ~104 GB | ~28 GB | ~10 GB |
| 34B | ~272 GB | ~75 GB | ~20 GB |
| 70B | ~560 GB | ~160 GB | ~48 GB |
Notes:
- QLoRA memory includes model + optimizer states + activations
- Actual usage varies with batch size, sequence length, and gradient checkpointing
- Add ~20% buffer for safe operation
GPU Recommendations
| GPU VRAM | Max Model Size (QLoRA) |
|---|---|
| 8 GB | 7B (tight) |
| 16 GB | 7-13B |
| 24 GB | 13-34B |
| 48 GB | 34-70B |
| 80 GB | 70B+ comfortably |
Complete Training Example
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
import torch
# 1. Quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
# 2. Load quantized model
model_name = "meta-llama/Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
attn_implementation="flash_attention_2", # Optional: faster attention
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# 3. Prepare for k-bit training (critical step!)
model = prepare_model_for_kbit_training(model)
# 4. LoRA config (see lora skill for parameter details)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# 5. Dataset
dataset = load_dataset("tatsu-lab/alpaca", split="train[:1000]")
def format_example(example):
if example["input"]:
return {"text": f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:\n{example['output']}"}
return {"text": f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['output']}"}
dataset = dataset.map(format_example)
# 6. Training
sft_config = SFTConfig(
output_dir="./qlora-output",
max_seq_length=512,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
num_train_epochs=1,
learning_rate=2e-4,
bf16=True,
logging_steps=10,
save_steps=100,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
optim="paged_adamw_8bit", # Paged optimizer for memory efficiency
)
trainer = SFTTrainer(
model=model,
args=sft_config,
train_dataset=dataset,
processing_class=tokenizer,
dataset_text_field="text",
)
trainer.train()
# 7. Save adapter
model.save_pretrained("./qlora-adapter")
tokenizer.save_pretrained("./qlora-adapter")
Inference and Merging
Inference with Quantized Model
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
import torch
model_name = "meta-llama/Llama-3.1-8B"
# Load quantized base model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load adapter
model = PeftModel.from_pretrained(base_model, "./qlora-adapter")
model.eval()
# Generate
inputs = tokenizer("### Instruction:\nExplain quantum computing.\n\n### Response:\n", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Merging to Full Precision
To merge QLoRA adapters into a full-precision model (for deployment without bitsandbytes):
from transformers import AutoModelForCausalLM
from peft import PeftModel
import torch
# Load base model in full precision (on CPU to avoid OOM)
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.bfloat16,
device_map="cpu",
)
# Load adapter
model = PeftModel.from_pretrained(base_model, "./qlora-adapter")
# Merge and unload
merged_model = model.merge_and_unload()
# Save merged model
merged_model.save_pretrained("./merged-model")
Note: Merging requires enough RAM to hold the full-precision model. For 70B models, this means ~140GB RAM.
Troubleshooting
CUDA Version Issues
# Check CUDA version
nvcc --version
python -c "import torch; print(torch.version.cuda)"
# bitsandbytes requires CUDA 11.7+
# If version mismatch, reinstall:
pip uninstall bitsandbytes
pip install bitsandbytes --upgrade
"cannot find libcudart" or Missing Library Errors
# Find CUDA installation
find /usr -name "libcudart*" 2>/dev/null
# Set environment variable
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Or for conda:
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
Slow Training
Common cause: compute dtype mismatch
# Check if model is using expected dtype
for name, param in model.named_parameters():
if param.requires_grad:
print(f"{name}: {param.dtype}")
break # All LoRA params should match
# Ensure bf16 is used in training args if BitsAndBytesConfig uses bf16
# Mismatch causes constant dtype conversions
Out of Memory
# 1. Enable gradient checkpointing
model.gradient_checkpointing_enable()
# 2. Reduce batch size, increase accumulation
per_device_train_batch_size = 1
gradient_accumulation_steps = 16
# 3. Use paged optimizer
optim = "paged_adamw_8bit"
# 4. Reduce sequence length
max_seq_length = 256
# 5. Target fewer modules
target_modules = ["q_proj", "v_proj"] # Minimal set
Model Loads But Training Fails
# Ensure prepare_model_for_kbit_training is called
from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model) # Don't skip this!
# Enable input gradients if needed
model.enable_input_require_grads()
Best Practices
Always use
prepare_model_for_kbit_training: This enables gradient computation through the frozen quantized layersMatch compute dtype with training precision: If
bnb_4bit_compute_dtype=torch.bfloat16, usebf16=Truein training argsUse paged optimizers for large models:
optim="paged_adamw_8bit"or"paged_adamw_32bit"handles memory spikesStart with NF4 + double quantization: This is the recommended default; only change if debugging
Gradient checkpointing is essential: Always enable for QLoRA training to fit larger batch sizes
Test inference before long training runs: Load the model and generate a few tokens to catch configuration issues early
Monitor GPU memory: Use
nvidia-smiortorch.cuda.memory_summary()to track actual usageConsider 8-bit for unstable training: If 4-bit training shows instability, try
load_in_8bit=Trueas a middle ground