Claude Code Plugins

Community-maintained marketplace

Feedback

Loading and using pretrained models with Hugging Face Transformers. Use when working with pretrained models from the Hub, running inference with Pipeline API, fine-tuning models with Trainer, or handling text, vision, audio, and multimodal tasks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name transformers
description Loading and using pretrained models with Hugging Face Transformers. Use when working with pretrained models from the Hub, running inference with Pipeline API, fine-tuning models with Trainer, or handling text, vision, audio, and multimodal tasks.

Using Hugging Face Transformers

Transformers is the model-definition framework for state-of-the-art machine learning across text, vision, audio, and multimodal domains. It provides unified APIs for loading pretrained models, running inference, and fine-tuning.

Table of Contents

Core Concepts

The Three Core Classes

Every model in Transformers has three core components:

from transformers import AutoConfig, AutoModel, AutoTokenizer

# Configuration: hyperparameters and architecture settings
config = AutoConfig.from_pretrained("bert-base-uncased")

# Model: the neural network weights
model = AutoModel.from_pretrained("bert-base-uncased")

# Tokenizer/Processor: converts inputs to tensors
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

The from_pretrained Pattern

All loading uses from_pretrained() which handles downloading, caching, and device placement:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "meta-llama/Llama-3.2-1B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",  # Automatic device placement
)

Auto Classes

Use task-specific Auto classes for the correct model head:

from transformers import (
    AutoModelForCausalLM,          # Text generation (GPT, Llama)
    AutoModelForSeq2SeqLM,         # Encoder-decoder (T5, BART)
    AutoModelForSequenceClassification,  # Classification
    AutoModelForTokenClassification,     # NER, POS tagging
    AutoModelForQuestionAnswering,       # Extractive QA
    AutoModelForMaskedLM,                # BERT-style masked LM
    AutoModelForImageClassification,     # Vision models
    AutoModelForSpeechSeq2Seq,           # Speech recognition
)

Pipeline API

The pipeline() function provides high-level inference with minimal code:

Text Tasks

from transformers import pipeline

# Text generation
generator = pipeline("text-generation", model="Qwen/Qwen2.5-1.5B")
output = generator("The secret to success is", max_new_tokens=50)

# Text classification
classifier = pipeline("sentiment-analysis")
result = classifier("I love this product!")
# [{'label': 'POSITIVE', 'score': 0.9998}]

# Named entity recognition
ner = pipeline("ner", aggregation_strategy="simple")
entities = ner("Hugging Face is based in New York City.")

# Question answering
qa = pipeline("question-answering")
answer = qa(question="What is the capital?", context="Paris is the capital of France.")

# Summarization
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
summary = summarizer(long_text, max_length=130, min_length=30)

# Translation
translator = pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
result = translator("Hello, how are you?")

Chat/Conversational

from transformers import pipeline
import torch

pipe = pipeline(
    "text-generation",
    model="meta-llama/Meta-Llama-3-8B-Instruct",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Explain quantum computing in simple terms."},
]

response = pipe(messages, max_new_tokens=256)
print(response[0]["generated_text"][-1]["content"])

Vision Tasks

# Image classification
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
result = classifier("path/to/image.jpg")

# Object detection
detector = pipeline("object-detection", model="facebook/detr-resnet-50")
objects = detector("path/to/image.jpg")

# Image segmentation
segmenter = pipeline("image-segmentation", model="facebook/mask2former-swin-base-coco-panoptic")
masks = segmenter("path/to/image.jpg")

Audio Tasks

# Speech recognition
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
text = transcriber("path/to/audio.mp3")

# Audio classification
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-ks")
result = classifier("path/to/audio.wav")

Multimodal Tasks

# Visual question answering
vqa = pipeline("visual-question-answering", model="Salesforce/blip-vqa-base")
answer = vqa(image="image.jpg", question="What color is the car?")

# Image-to-text (captioning)
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
caption = captioner("image.jpg")

# Document question answering
doc_qa = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
answer = doc_qa(image="document.png", question="What is the total?")

Model Loading

Device Placement

from transformers import AutoModelForCausalLM
import torch

# Automatic placement across available devices
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.2-3B",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

# Specific device
model = AutoModelForCausalLM.from_pretrained(
    "gpt2",
    device_map="cuda:0",
)

# Custom device map for model parallelism
device_map = {
    "model.embed_tokens": 0,
    "model.layers.0": 0,
    "model.layers.1": 1,
    "model.norm": 1,
    "lm_head": 1,
}
model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map)

Loading from Local Path

# Save model locally
model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")

# Load from local path
model = AutoModelForCausalLM.from_pretrained("./my_model")
tokenizer = AutoTokenizer.from_pretrained("./my_model")

Trust Remote Code

Some models require executing custom code from the Hub:

model = AutoModelForCausalLM.from_pretrained(
    "microsoft/phi-2",
    trust_remote_code=True,  # Required for custom architectures
)

Inference Patterns

Text Generation

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "Qwen/Qwen2.5-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

# Basic generation
inputs = tokenizer("Once upon a time", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)

# With generation config
outputs = model.generate(
    **inputs,
    max_new_tokens=100,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    repetition_penalty=1.1,
)

Chat Templates

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is the capital of France?"},
]

# Apply chat template
input_text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)

inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

Getting Embeddings

from transformers import AutoModel, AutoTokenizer
import torch

model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")

def get_embeddings(texts: list[str]) -> torch.Tensor:
    inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)

    # Mean pooling
    attention_mask = inputs["attention_mask"]
    embeddings = outputs.last_hidden_state
    mask_expanded = attention_mask.unsqueeze(-1).expand(embeddings.size()).float()
    sum_embeddings = (embeddings * mask_expanded).sum(1)
    sum_mask = mask_expanded.sum(1).clamp(min=1e-9)
    return sum_embeddings / sum_mask

embeddings = get_embeddings(["Hello world", "How are you?"])

Classification

from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")

inputs = tokenizer("I love this movie!", return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.softmax(outputs.logits, dim=-1)

labels = model.config.id2label
for idx, prob in enumerate(predictions[0]):
    print(f"{labels[idx]}: {prob:.4f}")

Fine-tuning with Trainer

Basic Fine-tuning

from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
)
from datasets import load_dataset

# Load data and model
dataset = load_dataset("imdb")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained(
    "distilbert-base-uncased",
    num_labels=2,
)

# Tokenize dataset
def tokenize(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenized = dataset.map(tokenize, batched=True)

# Training arguments
training_args = TrainingArguments(
    output_dir="./results",
    eval_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    logging_steps=100,
    save_strategy="epoch",
    load_best_model_at_end=True,
)

# Train
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized["train"],
    eval_dataset=tokenized["test"],
)

trainer.train()

Pushing to Hub

# Login first: huggingface-cli login

# Push model and tokenizer
model.push_to_hub("my-username/my-fine-tuned-model")
tokenizer.push_to_hub("my-username/my-fine-tuned-model")

# Or use trainer
trainer.push_to_hub()

See reference/fine-tuning.md for advanced patterns including LoRA, custom data collators, and evaluation metrics.

Working with Modalities

Vision Models

from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image

processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")

image = Image.open("image.jpg")
inputs = processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    predicted_class = outputs.logits.argmax(-1).item()
    print(model.config.id2label[predicted_class])

Audio Models

from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torch

processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "openai/whisper-large-v3",
    torch_dtype=torch.float16,
    device_map="auto",
)

# Load audio (use librosa, soundfile, or datasets)
import librosa
audio, sr = librosa.load("audio.mp3", sr=16000)

inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
inputs = inputs.to(model.device)

generated_ids = model.generate(**inputs)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

Vision-Language Models

from transformers import AutoProcessor, AutoModelForVision2Seq
from PIL import Image
import torch

model_name = "llava-hf/llava-1.5-7b-hf"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForVision2Seq.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto",
)

image = Image.open("image.jpg")
prompt = "USER: <image>\nDescribe this image in detail.\nASSISTANT:"

inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
response = processor.decode(outputs[0], skip_special_tokens=True)

Memory and Performance

Quantization

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch

# 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.2-3B",
    quantization_config=bnb_config,
    device_map="auto",
)

# 8-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.2-3B",
    load_in_8bit=True,
    device_map="auto",
)

Flash Attention

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.2-3B",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",  # Requires flash-attn package
    device_map="auto",
)

torch.compile

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model = torch.compile(model, mode="reduce-overhead")

Batched Inference

texts = ["First prompt", "Second prompt", "Third prompt"]
inputs = tokenizer(texts, return_tensors="pt", padding=True).to(model.device)

with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=50)

decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)

See reference/advanced-inference.md for streaming, KV caching, and serving patterns.

Best Practices

  1. Use bfloat16 over float16: Better numerical stability on modern GPUs
  2. Set pad token for generation: tokenizer.pad_token = tokenizer.eos_token
  3. Use device_map="auto": Let Accelerate handle device placement
  4. Enable Flash Attention: Significant speedup for long sequences
  5. Batch when possible: Amortize fixed costs across multiple inputs
  6. Use pipeline for quick prototyping: Switch to manual control for production
  7. Cache models locally: Set HF_HOME environment variable for model cache location
  8. Check model license: Verify usage rights before deployment

References

See reference/ for detailed documentation:

  • fine-tuning.md - Advanced fine-tuning patterns with LoRA, PEFT, and custom training
  • advanced-inference.md - Generation strategies, streaming, and serving