Claude Code Plugins

Community-maintained marketplace

Feedback

Python development best practices including PEP 8 style guidelines, type hints, docstring conventions, and common patterns. Use when writing or modifying Python code.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name python-best-practices
description Python development best practices including PEP 8 style guidelines, type hints, docstring conventions, and common patterns. Use when writing or modifying Python code.

Python Best Practices

Purpose

This skill provides guidance on Python development best practices to ensure code quality, maintainability, and consistency across your Python projects.

When to Use This Skill

Auto-activates when:

  • Working with Python files (*.py)
  • Mentions of "python", "best practices", "style guide"
  • Adding type hints or docstrings
  • Code refactoring in Python

Style Guidelines

PEP 8 Compliance

Follow PEP 8 style guide for Python code:

  • Indentation: 4 spaces per indentation level
  • Line Length: Maximum 79 characters for code, 72 for docstrings/comments
  • Blank Lines: 2 blank lines between top-level definitions, 1 between methods
  • Imports: Always at top of file, grouped (stdlib, third-party, local)
  • Naming Conventions:
    • snake_case for functions, variables, modules
    • PascalCase for classes
    • UPPER_SNAKE_CASE for constants
    • Leading underscore _name for internal/private

Import Organization

Always organize imports in this order:

# 1. Standard library imports
import os
import sys
from pathlib import Path

# 2. Third-party imports
import requests
import numpy as np

# 3. Local application imports
from myapp.core import MyClass
from myapp.utils import helper_function

Avoid circular imports by using TYPE_CHECKING:

from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from myapp.other_module import OtherClass

def my_function(obj: "OtherClass") -> None:
    """Function that uses OtherClass only for type hints."""
    pass

Type Hints

Always Use Type Hints

Type hints improve code clarity and catch errors early:

def process_data(
    items: list[str],
    max_count: int | None = None,
    verbose: bool = False
) -> dict[str, int]:
    """Process items and return counts.

    Parameters
    ----------
    items : list[str]
        List of items to process
    max_count : int | None, optional
        Maximum items to process, by default None
    verbose : bool, optional
        Enable verbose output, by default False

    Returns
    -------
    dict[str, int]
        Dictionary mapping items to counts
    """
    result: dict[str, int] = {}

    for item in items[:max_count]:
        result[item] = result.get(item, 0) + 1
        if verbose:
            print(f"Processed: {item}")

    return result

Modern Type Syntax (Python 3.10+)

Use modern union syntax with | instead of Union:

# Good (Python 3.10+)
def get_value(key: str) -> int | None:
    pass

# Avoid (old style)
from typing import Union, Optional
def get_value(key: str) -> Optional[int]:
    pass

Generic Types

Use built-in generic types (Python 3.9+):

# Good (Python 3.9+)
def process_list(items: list[str]) -> dict[str, int]:
    pass

# Avoid (old style)
from typing import List, Dict
def process_list(items: List[str]) -> Dict[str, int]:
    pass

Docstrings

NumPy Style Docstrings

Use NumPy-style docstrings for consistency:

def calculate_statistics(
    data: list[float],
    include_median: bool = True
) -> dict[str, float]:
    """Calculate statistical measures for a dataset.

    This function computes mean, standard deviation, and optionally
    median for the provided dataset.

    Parameters
    ----------
    data : list[float]
        List of numerical values to analyze
    include_median : bool, optional
        Whether to calculate median, by default True

    Returns
    -------
    dict[str, float]
        Dictionary containing:
        - 'mean': arithmetic mean
        - 'std': standard deviation
        - 'median': median value (if include_median=True)

    Raises
    ------
    ValueError
        If data is empty or contains non-numeric values

    Examples
    --------
    >>> calculate_statistics([1.0, 2.0, 3.0, 4.0, 5.0])
    {'mean': 3.0, 'std': 1.414, 'median': 3.0}

    Notes
    -----
    Standard deviation uses Bessel's correction (ddof=1).
    """
    if not data:
        raise ValueError("Data cannot be empty")

    # Implementation here
    pass

Class Docstrings

class DataProcessor:
    """Process and transform data from various sources.

    This class provides methods for loading, transforming, and
    validating data from multiple input formats.

    Parameters
    ----------
    source_dir : Path
        Directory containing source data files
    cache_enabled : bool, optional
        Enable result caching, by default True

    Attributes
    ----------
    source_dir : Path
        Directory path for source files
    cache : dict[str, Any]
        Cache for processed results

    Examples
    --------
    >>> processor = DataProcessor(Path("/data"))
    >>> results = processor.process_files()
    """

    def __init__(self, source_dir: Path, cache_enabled: bool = True):
        """Initialize the DataProcessor."""
        self.source_dir = source_dir
        self.cache: dict[str, Any] = {} if cache_enabled else None

Error Handling

Specific Exception Types

Use specific exception types, not bare except:

# Good
try:
    with open(file_path) as f:
        data = f.read()
except FileNotFoundError:
    logger.error(f"File not found: {file_path}")
    raise
except PermissionError:
    logger.error(f"Permission denied: {file_path}")
    raise

# Avoid
try:
    with open(file_path) as f:
        data = f.read()
except:  # Too broad!
    pass

Context Managers

Always use context managers for resources:

# Good
with open(file_path) as f:
    content = f.read()

# Avoid
f = open(file_path)
content = f.read()
f.close()  # Easy to forget!

Custom Exceptions

Define custom exceptions for domain-specific errors:

class ValidationError(Exception):
    """Raised when data validation fails."""
    pass

class DataProcessingError(Exception):
    """Raised when data processing encounters an error."""

    def __init__(self, message: str, item_id: str):
        super().__init__(message)
        self.item_id = item_id

Common Patterns

Dataclasses for Data Structures

Use dataclasses for simple data containers:

from dataclasses import dataclass, field

@dataclass
class User:
    """User profile information."""

    username: str
    email: str
    age: int
    tags: list[str] = field(default_factory=list)
    is_active: bool = True

    def __post_init__(self):
        """Validate fields after initialization."""
        if self.age < 0:
            raise ValueError("Age cannot be negative")

Enums for Fixed Sets

Use Enum for fixed sets of values:

from enum import Enum, auto

class Status(Enum):
    """Processing status values."""

    PENDING = auto()
    PROCESSING = auto()
    COMPLETED = auto()
    FAILED = auto()

# Usage
current_status = Status.PENDING
if current_status == Status.COMPLETED:
    print("Done!")

Pathlib for File Operations

Use pathlib.Path instead of os.path:

from pathlib import Path

# Good
data_dir = Path("/data")
file_path = data_dir / "input.txt"

if file_path.exists():
    content = file_path.read_text()

# Avoid
import os
data_dir = "/data"
file_path = os.path.join(data_dir, "input.txt")

if os.path.exists(file_path):
    with open(file_path) as f:
        content = f.read()

List Comprehensions

Use comprehensions for clarity and performance:

# Good
squared = [x**2 for x in range(10) if x % 2 == 0]

# Avoid
squared = []
for x in range(10):
    if x % 2 == 0:
        squared.append(x**2)

Code Organization

Module Structure

Organize modules with clear sections:

"""Module for data processing utilities.

This module provides functions for loading, transforming, and
validating data from various sources.
"""

# Standard library imports
import os
import sys
from pathlib import Path

# Third-party imports
import requests
import pandas as pd

# Local imports
from myapp.core import BaseProcessor
from myapp.utils import validate_input

# Constants
MAX_RETRIES = 3
DEFAULT_TIMEOUT = 30

# Exceptions
class ProcessingError(Exception):
    """Raised when processing fails."""
    pass

# Functions
def load_data(source: str) -> pd.DataFrame:
    """Load data from source."""
    pass

# Classes
class DataProcessor(BaseProcessor):
    """Process and validate data."""
    pass

# Module initialization
if __name__ == "__main__":
    # CLI entry point
    main()

Avoid Magic Numbers

Use named constants instead of magic numbers:

# Good
MAX_RETRIES = 3
TIMEOUT_SECONDS = 30

def fetch_data(url: str) -> dict:
    for attempt in range(MAX_RETRIES):
        response = requests.get(url, timeout=TIMEOUT_SECONDS)
        if response.status_code == 200:
            return response.json()

# Avoid
def fetch_data(url: str) -> dict:
    for attempt in range(3):  # What is 3?
        response = requests.get(url, timeout=30)  # Why 30?
        if response.status_code == 200:
            return response.json()

Testing

Use pytest for Testing

import pytest
from myapp.processor import DataProcessor

def test_process_valid_data():
    """Test processing with valid input."""
    processor = DataProcessor()
    result = processor.process([1, 2, 3])
    assert result == [2, 4, 6]

def test_process_empty_data():
    """Test processing with empty input."""
    processor = DataProcessor()
    with pytest.raises(ValueError):
        processor.process([])

@pytest.fixture
def sample_data():
    """Provide sample data for tests."""
    return [1, 2, 3, 4, 5]

def test_with_fixture(sample_data):
    """Test using fixture."""
    processor = DataProcessor()
    result = processor.process(sample_data)
    assert len(result) == len(sample_data)

Key Takeaways

  1. Follow PEP 8 style guidelines consistently
  2. Always use type hints for function signatures
  3. Write NumPy-style docstrings for all public functions/classes
  4. Use specific exception types, not bare except
  5. Prefer pathlib.Path over os.path
  6. Use dataclasses and enums for structured data
  7. Organize imports: stdlib → third-party → local
  8. Avoid magic numbers, use named constants
  9. Write tests using pytest
  10. Use modern Python syntax (3.9+)