| name | interview-automation-builder |
| description | Build AI-powered interview systems with question generation, response evaluation, and session management. Supports FastAPI + OpenAI integration for technical, behavioral, and scenario-based interviews with real-time scoring and feedback. |
Interview Automation Builder Skill
Expert assistance for building AI-powered interview and assessment automation systems.
What This Skill Provides
Core Tools
- generate_interview_questions.py - Create adaptive interview questions using LLM
- evaluate_responses.py - Score and analyze candidate responses with rubrics
- manage_sessions.py - Track interview progress, session state, and analytics
Reference Documentation
- assessment_patterns.md - Scoring rubrics, evaluation criteria, bias detection
- voice_processing.md - Audio transcription, speech-to-text integration patterns
- openai_interview_patterns.md - OpenAI API patterns for interview automation
- session_management.md - State tracking, progress monitoring, analytics
- best_practices.md - Interview automation best practices
- troubleshooting.md - Common interview system issues and solutions
Templates
- Interview question templates (technical, behavioral, scenario-based)
- Scoring rubrics and evaluation forms
- Session state management schemas
- Real-time feedback components
- FastAPI endpoint templates for interview APIs
When to Use This Skill
Perfect For
- Building AI-powered interview practice platforms
- Creating technical assessment systems
- Automating behavioral interview question generation
- Implementing real-time response evaluation
- Tracking candidate progress across interview sessions
- Integrating OpenAI for adaptive questioning
- Voice-enabled interview systems
Not For
- General chatbot development (use llm-integration)
- Customer support automation (different domain)
- Simple form-based surveys (over-engineered)
- Non-AI interview scheduling (use calendar tools)
Quick Start Workflows
Workflow 1: Generate Adaptive Technical Interview
# Step 1: Generate technical questions for a Python developer role
python scripts/generate_interview_questions.py \
--role "Senior Python Developer" \
--type technical \
--difficulty advanced \
--count 10 \
--output questions.json
# Step 2: Review generated questions
cat questions.json
# Step 3: Start interview session
python scripts/manage_sessions.py \
--action create \
--candidate-id "candidate_123" \
--questions questions.json
Workflow 2: Evaluate Candidate Responses
# Step 1: Evaluate a candidate's response
python scripts/evaluate_responses.py \
--question-id "q_001" \
--response "I would use asyncio for concurrent operations..." \
--rubric rubrics/technical_python.json \
--output scores.json
# Step 2: View detailed scoring
cat scores.json
# Step 3: Update session with score
python scripts/manage_sessions.py \
--action update \
--session-id "session_456" \
--score-file scores.json
Workflow 3: Build Interview API
# Step 1: Copy FastAPI template
cp templates/interview_api_endpoints.py app/routers/interview.py
# Step 2: Configure question generation
cp templates/question_config.yaml config/questions.yaml
# Step 3: Test API
uvicorn app.main:app --reload
# Step 4: Test question generation endpoint
curl -X POST http://localhost:8000/api/interview/questions \
-H "Content-Type: application/json" \
-d '{"role": "Data Scientist", "type": "technical", "count": 5}'
Decision Trees
When to use which question generation approach?
Need interview questions?
│
├─ Pre-defined question bank?
│ └─ Use: Static question templates → templates/question_bank.json
│
├─ Role-specific adaptive questions?
│ └─ Use: generate_interview_questions.py --type technical --adaptive
│
├─ Behavioral assessment?
│ └─ Use: generate_interview_questions.py --type behavioral --framework STAR
│
└─ Mixed technical + behavioral?
└─ Use: generate_interview_questions.py --type mixed --balance 60/40
When to use which evaluation method?
Need to score responses?
│
├─ Objective technical answer?
│ └─ Use: evaluate_responses.py --rubric technical_objective.json
│
├─ Subjective behavioral response?
│ └─ Use: evaluate_responses.py --rubric behavioral_subjective.json
│
├─ Code submission?
│ └─ Use: evaluate_responses.py --mode code --run-tests
│
└─ Voice/audio response?
└─ Use: Speech-to-text → evaluate_responses.py --input transcription.txt
Quality Checklist
Essentials (Required)
- Questions are unbiased and inclusive
- Evaluation rubrics are clearly defined and consistent
- Session state is properly tracked and persisted
- User consent is obtained for recording/transcription
- Candidate data is encrypted and GDPR-compliant
- Error handling for API failures and timeouts
- Rate limiting to prevent API quota exhaustion
Best Practices (Recommended)
- Questions are adaptive based on previous answers
- Scoring includes confidence levels and reasoning
- Feedback is constructive and actionable
- Multiple evaluators for bias reduction
- Session recovery for interrupted interviews
- Analytics dashboard for hiring team
- A/B testing for question effectiveness
Advanced (Nice to Have)
- Voice tone analysis for soft skills assessment
- Real-time hints for struggling candidates
- Multi-language support for global hiring
- Integration with ATS (Applicant Tracking System)
- Automated interview report generation
- Video analysis for non-verbal cues
- Custom rubric builder UI
Common Pitfalls & Solutions
Pitfall 1: Biased Question Generation
Problem: LLM generates questions that favor certain demographics or backgrounds.
Solution:
# Use bias detection in question generation
questions = generate_questions(
role="Software Engineer",
bias_detection=True,
diversity_filter=True,
review_mode=True
)
# Review flagged questions before use
for q in questions:
if q.get('bias_score', 0) > 0.3:
print(f"Review needed: {q['question']}")
print(f"Bias reason: {q['bias_reason']}")
Pitfall 2: Inconsistent Scoring
Problem: Same answer gets different scores across evaluation runs.
Solution:
# Use temperature=0 for consistent scoring
evaluation = evaluate_response(
response=candidate_answer,
rubric=scoring_rubric,
temperature=0, # Deterministic scoring
use_chain_of_thought=True # Explain reasoning
)
Pitfall 3: Session State Loss
Problem: Interview session data lost during network interruptions.
Solution:
# Implement auto-save with state recovery
session_manager = SessionManager(
auto_save_interval=30, # Save every 30 seconds
backup_storage="s3://interviews/backups",
recovery_enabled=True
)
# Graceful recovery
try:
session = session_manager.resume(session_id)
except SessionNotFound:
session = session_manager.recover_from_backup(session_id)
Pitfall 4: API Rate Limiting
Problem: OpenAI API rate limits hit during high-volume interviews.
Solution:
# Implement exponential backoff and caching
from openai_utils import RateLimitedClient
client = RateLimitedClient(
max_retries=5,
backoff_factor=2,
cache_responses=True, # Cache similar questions
batch_mode=True # Batch requests when possible
)
Pro Tips
Tip 1: Use Chain-of-Thought for Explainable Scoring
# Generate scores with detailed reasoning
evaluation = evaluate_response(
response=answer,
rubric=rubric,
chain_of_thought=True # LLM explains its scoring
)
print(f"Score: {evaluation['score']}")
print(f"Reasoning: {evaluation['reasoning']}")
# Share reasoning with candidate for transparency
Tip 2: Implement Progressive Difficulty
# Adjust difficulty based on performance
def get_next_question(session):
avg_score = session.get_average_score()
if avg_score > 0.8:
difficulty = "advanced"
elif avg_score > 0.5:
difficulty = "intermediate"
else:
difficulty = "beginner"
return generate_question(difficulty=difficulty)
Tip 3: Cache Common Questions for Cost Optimization
# Cache frequently generated questions
@lru_cache(maxsize=1000)
def get_common_question(role, level, topic):
return generate_question(role, level, topic)
# Reduces API costs by 60-80% for common roles
Tip 4: Use STAR Framework for Behavioral Questions
# Generate STAR-formatted behavioral questions
question = generate_behavioral_question(
framework="STAR", # Situation, Task, Action, Result
competency="leadership",
include_followups=True # Auto-generate follow-up questions
)
Tip 5: Implement Multi-Evaluator Consensus
# Reduce bias with multiple evaluators
evaluations = [
evaluate_response(response, rubric, evaluator_id=1),
evaluate_response(response, rubric, evaluator_id=2),
evaluate_response(response, rubric, evaluator_id=3)
]
final_score = calculate_consensus(evaluations, method="median")
confidence = calculate_inter_rater_reliability(evaluations)
Example Usage
Complete Interview Session Example
#!/usr/bin/env python3
"""
Complete interview automation example.
Generates questions, manages session, evaluates responses.
"""
from interview_automation import (
QuestionGenerator,
ResponseEvaluator,
SessionManager
)
# Initialize components
generator = QuestionGenerator(model="gpt-4")
evaluator = ResponseEvaluator(model="gpt-4", temperature=0)
session_mgr = SessionManager(storage="database")
# Create interview session
session = session_mgr.create_session(
candidate_id="candidate_123",
role="Senior Python Developer",
interview_type="technical"
)
# Generate first question
question = generator.generate(
role=session.role,
difficulty="intermediate",
topics=["async programming", "data structures"]
)
print(f"Question: {question.text}")
# Simulate candidate response
candidate_response = """
I would use asyncio.gather() to run multiple coroutines concurrently.
This allows efficient I/O operations without blocking.
"""
# Evaluate response
evaluation = evaluator.evaluate(
question=question,
response=candidate_response,
rubric="rubrics/python_technical.json",
explain=True
)
print(f"Score: {evaluation.score}/10")
print(f"Reasoning: {evaluation.reasoning}")
# Update session
session_mgr.add_response(
session_id=session.id,
question_id=question.id,
response=candidate_response,
evaluation=evaluation
)
# Generate next question based on performance
if evaluation.score >= 7:
next_question = generator.generate(
difficulty="advanced", # Increase difficulty
topics=question.topics # Continue same topic
)
else:
next_question = generator.generate(
difficulty="intermediate", # Same difficulty
topics=["different topic"] # Try different area
)
print(f"Next Question: {next_question.text}")
# Complete session and generate report
session_mgr.complete_session(session.id)
report = session_mgr.generate_report(session.id)
print(f"Final Report: {report.summary}")
Integration Examples
FastAPI Integration
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from interview_automation import QuestionGenerator, ResponseEvaluator
app = FastAPI()
class QuestionRequest(BaseModel):
role: str
difficulty: str
count: int = 5
class EvaluationRequest(BaseModel):
question_id: str
response: str
@app.post("/api/interview/questions")
async def generate_questions(request: QuestionRequest):
try:
generator = QuestionGenerator()
questions = generator.generate_batch(
role=request.role,
difficulty=request.difficulty,
count=request.count
)
return {"questions": questions}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/interview/evaluate")
async def evaluate_response(request: EvaluationRequest):
try:
evaluator = ResponseEvaluator()
result = evaluator.evaluate(
question_id=request.question_id,
response=request.response
)
return {"evaluation": result}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
Related Skills
- llm-integration - Core LLM integration patterns
- fastapi-backend-builder - Build FastAPI backends for interview APIs
- validation-pipeline - Multi-stage validation for response quality
- streamlit-app-builder - Build interview admin dashboards
Next Steps
- Review the reference documentation in
references/ - Explore templates in
templates/ - Run example scripts with
--helpto see all options - Check
references/troubleshooting.mdfor common issues - Review
references/best_practices.mdfor production deployment