Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name customerio-deploy-pipeline
description Deploy Customer.io integrations to production. Use when deploying to cloud platforms, setting up production infrastructure, or automating deployments. Trigger with phrases like "deploy customer.io", "customer.io production", "customer.io cloud run", "customer.io kubernetes".
allowed-tools Read, Write, Edit, Bash(gh:*), Bash(curl:*)
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Customer.io Deploy Pipeline

Overview

Deploy Customer.io integrations to production cloud platforms with proper configuration and monitoring.

Prerequisites

  • CI/CD pipeline configured
  • Cloud platform access (GCP, AWS, Vercel, etc.)
  • Production credentials ready

Instructions

Step 1: Google Cloud Run Deployment

# .github/workflows/deploy-cloud-run.yml
name: Deploy to Cloud Run

on:
  push:
    branches: [main]

env:
  PROJECT_ID: ${{ secrets.GCP_PROJECT_ID }}
  REGION: us-central1
  SERVICE_NAME: customerio-service

jobs:
  deploy:
    runs-on: ubuntu-latest

    permissions:
      contents: read
      id-token: write

    steps:
      - uses: actions/checkout@v4

      - id: auth
        uses: google-github-actions/auth@v2
        with:
          workload_identity_provider: ${{ secrets.WIF_PROVIDER }}
          service_account: ${{ secrets.WIF_SERVICE_ACCOUNT }}

      - name: Set up Cloud SDK
        uses: google-github-actions/setup-gcloud@v2

      - name: Configure Docker
        run: gcloud auth configure-docker ${{ env.REGION }}-docker.pkg.dev

      - name: Build and Push
        run: |
          docker build -t ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }} .
          docker push ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }}

      - name: Deploy to Cloud Run
        run: |
          gcloud run deploy ${{ env.SERVICE_NAME }} \
            --image ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }} \
            --region ${{ env.REGION }} \
            --platform managed \
            --set-secrets CUSTOMERIO_SITE_ID=customerio-site-id:latest,CUSTOMERIO_API_KEY=customerio-api-key:latest \
            --allow-unauthenticated

Step 2: Vercel Deployment

// vercel.json
{
  "buildCommand": "npm run build",
  "outputDirectory": "dist",
  "env": {
    "CUSTOMERIO_SITE_ID": "@customerio-site-id",
    "CUSTOMERIO_API_KEY": "@customerio-api-key"
  },
  "functions": {
    "api/**/*.ts": {
      "memory": 256,
      "maxDuration": 10
    }
  }
}
// api/customerio/identify.ts
import { TrackClient, RegionUS } from '@customerio/track';
import type { VercelRequest, VercelResponse } from '@vercel/node';

const client = new TrackClient(
  process.env.CUSTOMERIO_SITE_ID!,
  process.env.CUSTOMERIO_API_KEY!,
  { region: RegionUS }
);

export default async function handler(req: VercelRequest, res: VercelResponse) {
  if (req.method !== 'POST') {
    return res.status(405).json({ error: 'Method not allowed' });
  }

  try {
    const { userId, attributes } = req.body;
    await client.identify(userId, attributes);
    res.status(200).json({ success: true });
  } catch (error: any) {
    res.status(500).json({ error: error.message });
  }
}

Step 3: AWS Lambda Deployment

# serverless.yml
service: customerio-integration

provider:
  name: aws
  runtime: nodejs20.x
  region: us-east-1
  environment:
    CUSTOMERIO_SITE_ID: ${ssm:/customerio/site-id}
    CUSTOMERIO_API_KEY: ${ssm:/customerio/api-key}

functions:
  identify:
    handler: src/handlers/identify.handler
    events:
      - http:
          path: /identify
          method: post

  track:
    handler: src/handlers/track.handler
    events:
      - http:
          path: /track
          method: post

  webhook:
    handler: src/handlers/webhook.handler
    events:
      - http:
          path: /webhook
          method: post
// src/handlers/identify.ts
import { APIGatewayProxyHandler } from 'aws-lambda';
import { TrackClient, RegionUS } from '@customerio/track';

const client = new TrackClient(
  process.env.CUSTOMERIO_SITE_ID!,
  process.env.CUSTOMERIO_API_KEY!,
  { region: RegionUS }
);

export const handler: APIGatewayProxyHandler = async (event) => {
  try {
    const body = JSON.parse(event.body || '{}');
    await client.identify(body.userId, body.attributes);

    return {
      statusCode: 200,
      body: JSON.stringify({ success: true })
    };
  } catch (error: any) {
    return {
      statusCode: 500,
      body: JSON.stringify({ error: error.message })
    };
  }
};

Step 4: Kubernetes Deployment

# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: customerio-service
  labels:
    app: customerio-service
spec:
  replicas: 3
  selector:
    matchLabels:
      app: customerio-service
  template:
    metadata:
      labels:
        app: customerio-service
    spec:
      containers:
        - name: customerio-service
          image: gcr.io/PROJECT_ID/customerio-service:latest
          ports:
            - containerPort: 8080
          env:
            - name: CUSTOMERIO_SITE_ID
              valueFrom:
                secretKeyRef:
                  name: customerio-secrets
                  key: site-id
            - name: CUSTOMERIO_API_KEY
              valueFrom:
                secretKeyRef:
                  name: customerio-secrets
                  key: api-key
          resources:
            requests:
              memory: "128Mi"
              cpu: "100m"
            limits:
              memory: "256Mi"
              cpu: "200m"
          readinessProbe:
            httpGet:
              path: /health
              port: 8080
            initialDelaySeconds: 5
            periodSeconds: 10
          livenessProbe:
            httpGet:
              path: /health
              port: 8080
            initialDelaySeconds: 15
            periodSeconds: 20
---
apiVersion: v1
kind: Service
metadata:
  name: customerio-service
spec:
  selector:
    app: customerio-service
  ports:
    - port: 80
      targetPort: 8080
  type: ClusterIP

Step 5: Health Check Endpoint

// src/health.ts
import { TrackClient, RegionUS } from '@customerio/track';

interface HealthStatus {
  status: 'healthy' | 'degraded' | 'unhealthy';
  checks: {
    customerio: { status: string; latency?: number };
    database?: { status: string; latency?: number };
  };
  version: string;
  uptime: number;
}

const startTime = Date.now();

export async function healthCheck(): Promise<HealthStatus> {
  const checks: HealthStatus['checks'] = {
    customerio: { status: 'unknown' }
  };

  // Check Customer.io connectivity
  try {
    const start = Date.now();
    const client = new TrackClient(
      process.env.CUSTOMERIO_SITE_ID!,
      process.env.CUSTOMERIO_API_KEY!,
      { region: RegionUS }
    );

    await client.identify('health-check', { _health_check: true });
    checks.customerio = {
      status: 'healthy',
      latency: Date.now() - start
    };
  } catch (error) {
    checks.customerio = { status: 'unhealthy' };
  }

  const allHealthy = Object.values(checks).every(c => c.status === 'healthy');

  return {
    status: allHealthy ? 'healthy' : 'degraded',
    checks,
    version: process.env.APP_VERSION || '1.0.0',
    uptime: Date.now() - startTime
  };
}

Step 6: Blue-Green Deployment

#!/bin/bash
# scripts/blue-green-deploy.sh

set -e

CURRENT=$(gcloud run services describe customerio-service --region=us-central1 --format='value(status.traffic[0].revisionName)')
NEW_TAG="v$(date +%Y%m%d%H%M%S)"

echo "Current revision: $CURRENT"
echo "Deploying new revision: $NEW_TAG"

# Deploy new revision with no traffic
gcloud run deploy customerio-service \
  --image gcr.io/$PROJECT_ID/customerio-service:$NEW_TAG \
  --region us-central1 \
  --no-traffic

# Run smoke tests against new revision
NEW_URL=$(gcloud run services describe customerio-service --region=us-central1 --format='value(status.url)')
if ! curl -s "$NEW_URL/health" | grep -q '"status":"healthy"'; then
  echo "Health check failed, rolling back"
  exit 1
fi

# Gradually shift traffic
echo "Shifting 10% traffic to new revision"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=10

sleep 60

echo "Shifting 50% traffic"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=50

sleep 60

echo "Shifting 100% traffic"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=100

echo "Deployment complete"

Output

  • Cloud Run deployment workflow
  • Vercel serverless deployment
  • AWS Lambda configuration
  • Kubernetes deployment manifests
  • Health check endpoint
  • Blue-green deployment script

Error Handling

Issue Solution
Secret not found Verify secret name and permissions
Health check failing Check Customer.io credentials
Cold start timeout Increase memory/timeout limits

Resources

Next Steps

After deployment, proceed to customerio-webhooks-events for webhook handling.