Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name deepgram-performance-tuning
description Optimize Deepgram API performance for faster transcription and lower latency. Use when improving transcription speed, reducing latency, or optimizing audio processing pipelines. Trigger with phrases like "deepgram performance", "speed up deepgram", "optimize transcription", "deepgram latency", "deepgram faster".
allowed-tools Read, Write, Edit, Bash(gh:*), Bash(curl:*)
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Deepgram Performance Tuning

Overview

Optimize Deepgram integration performance through audio preprocessing, connection management, and configuration tuning.

Prerequisites

  • Working Deepgram integration
  • Performance monitoring in place
  • Audio processing capabilities
  • Baseline metrics established

Performance Factors

Factor Impact Optimization
Audio Format High Use optimal encoding
Sample Rate Medium Match model requirements
File Size High Stream large files
Model Choice High Balance accuracy vs speed
Network Latency Medium Use closest region
Concurrency Medium Manage connections

Instructions

Step 1: Optimize Audio Format

Preprocess audio for optimal transcription.

Step 2: Configure Connection Pooling

Reuse connections for better throughput.

Step 3: Tune API Parameters

Select appropriate model and features.

Step 4: Implement Streaming

Use streaming for real-time and large files.

Examples

Audio Preprocessing

// lib/audio-optimizer.ts
import ffmpeg from 'fluent-ffmpeg';
import { Readable } from 'stream';

interface OptimizedAudio {
  buffer: Buffer;
  mimetype: string;
  sampleRate: number;
  channels: number;
  duration: number;
}

export async function optimizeAudio(inputPath: string): Promise<OptimizedAudio> {
  return new Promise((resolve, reject) => {
    const chunks: Buffer[] = [];

    // Optimal settings for Deepgram
    ffmpeg(inputPath)
      .audioCodec('pcm_s16le')      // 16-bit PCM
      .audioChannels(1)              // Mono
      .audioFrequency(16000)         // 16kHz (optimal for speech)
      .format('wav')
      .on('error', reject)
      .on('end', () => {
        const buffer = Buffer.concat(chunks);
        resolve({
          buffer,
          mimetype: 'audio/wav',
          sampleRate: 16000,
          channels: 1,
          duration: buffer.length / (16000 * 2), // 16-bit = 2 bytes
        });
      })
      .pipe()
      .on('data', (chunk: Buffer) => chunks.push(chunk));
  });
}

// For already loaded audio data
export async function optimizeAudioBuffer(
  audioBuffer: Buffer,
  inputFormat: string
): Promise<Buffer> {
  return new Promise((resolve, reject) => {
    const chunks: Buffer[] = [];
    const readable = new Readable();
    readable.push(audioBuffer);
    readable.push(null);

    ffmpeg(readable)
      .inputFormat(inputFormat)
      .audioCodec('pcm_s16le')
      .audioChannels(1)
      .audioFrequency(16000)
      .format('wav')
      .on('error', reject)
      .on('end', () => resolve(Buffer.concat(chunks)))
      .pipe()
      .on('data', (chunk: Buffer) => chunks.push(chunk));
  });
}

Connection Pooling

// lib/connection-pool.ts
import { createClient, DeepgramClient } from '@deepgram/sdk';

interface PoolConfig {
  minSize: number;
  maxSize: number;
  acquireTimeout: number;
  idleTimeout: number;
}

class DeepgramConnectionPool {
  private pool: DeepgramClient[] = [];
  private inUse: Set<DeepgramClient> = new Set();
  private waiting: Array<(client: DeepgramClient) => void> = [];
  private config: PoolConfig;
  private apiKey: string;

  constructor(apiKey: string, config: Partial<PoolConfig> = {}) {
    this.apiKey = apiKey;
    this.config = {
      minSize: config.minSize ?? 2,
      maxSize: config.maxSize ?? 10,
      acquireTimeout: config.acquireTimeout ?? 10000,
      idleTimeout: config.idleTimeout ?? 60000,
    };

    // Initialize minimum connections
    for (let i = 0; i < this.config.minSize; i++) {
      this.pool.push(createClient(this.apiKey));
    }
  }

  async acquire(): Promise<DeepgramClient> {
    // Try to get from pool
    if (this.pool.length > 0) {
      const client = this.pool.pop()!;
      this.inUse.add(client);
      return client;
    }

    // Create new if under max
    if (this.inUse.size < this.config.maxSize) {
      const client = createClient(this.apiKey);
      this.inUse.add(client);
      return client;
    }

    // Wait for available connection
    return new Promise((resolve, reject) => {
      const timeout = setTimeout(() => {
        const index = this.waiting.indexOf(resolve);
        if (index > -1) this.waiting.splice(index, 1);
        reject(new Error('Connection acquire timeout'));
      }, this.config.acquireTimeout);

      this.waiting.push((client) => {
        clearTimeout(timeout);
        resolve(client);
      });
    });
  }

  release(client: DeepgramClient): void {
    this.inUse.delete(client);

    if (this.waiting.length > 0) {
      const waiter = this.waiting.shift()!;
      this.inUse.add(client);
      waiter(client);
    } else {
      this.pool.push(client);
    }
  }

  async execute<T>(fn: (client: DeepgramClient) => Promise<T>): Promise<T> {
    const client = await this.acquire();
    try {
      return await fn(client);
    } finally {
      this.release(client);
    }
  }

  getStats() {
    return {
      poolSize: this.pool.length,
      inUse: this.inUse.size,
      waiting: this.waiting.length,
    };
  }
}

export const pool = new DeepgramConnectionPool(process.env.DEEPGRAM_API_KEY!);

Streaming for Large Files

// lib/streaming-transcription.ts
import { createClient } from '@deepgram/sdk';
import { createReadStream, statSync } from 'fs';

interface StreamingOptions {
  chunkSize: number;
  model: string;
}

export async function streamLargeFile(
  filePath: string,
  options: Partial<StreamingOptions> = {}
): Promise<string> {
  const { chunkSize = 1024 * 1024, model = 'nova-2' } = options;
  const client = createClient(process.env.DEEPGRAM_API_KEY!);

  const fileSize = statSync(filePath).size;
  const transcripts: string[] = [];

  // Use live transcription for streaming
  const connection = client.listen.live({
    model,
    smart_format: true,
    punctuate: true,
  });

  return new Promise((resolve, reject) => {
    connection.on('open', () => {
      const stream = createReadStream(filePath, { highWaterMark: chunkSize });

      stream.on('data', (chunk: Buffer) => {
        connection.send(chunk);
      });

      stream.on('end', () => {
        connection.finish();
      });

      stream.on('error', reject);
    });

    connection.on('transcript', (data) => {
      if (data.is_final) {
        transcripts.push(data.channel.alternatives[0].transcript);
      }
    });

    connection.on('close', () => {
      resolve(transcripts.join(' '));
    });

    connection.on('error', reject);
  });
}

Model Selection for Speed

// lib/model-selector.ts
interface ModelConfig {
  name: string;
  accuracy: 'high' | 'medium' | 'low';
  speed: 'fast' | 'medium' | 'slow';
  costPerMinute: number;
}

const models: Record<string, ModelConfig> = {
  'nova-2': {
    name: 'Nova-2',
    accuracy: 'high',
    speed: 'fast',
    costPerMinute: 0.0043,
  },
  'nova': {
    name: 'Nova',
    accuracy: 'high',
    speed: 'fast',
    costPerMinute: 0.0043,
  },
  'enhanced': {
    name: 'Enhanced',
    accuracy: 'medium',
    speed: 'fast',
    costPerMinute: 0.0145,
  },
  'base': {
    name: 'Base',
    accuracy: 'low',
    speed: 'fast',
    costPerMinute: 0.0048,
  },
};

export function selectModel(requirements: {
  prioritize: 'accuracy' | 'speed' | 'cost';
  minAccuracy?: 'high' | 'medium' | 'low';
}): string {
  const { prioritize, minAccuracy = 'low' } = requirements;

  const accuracyOrder = ['high', 'medium', 'low'];
  const minAccuracyIndex = accuracyOrder.indexOf(minAccuracy);

  const eligible = Object.entries(models).filter(([_, config]) =>
    accuracyOrder.indexOf(config.accuracy) <= minAccuracyIndex
  );

  if (prioritize === 'accuracy') {
    return eligible.reduce((best, [name, config]) =>
      accuracyOrder.indexOf(config.accuracy) < accuracyOrder.indexOf(models[best].accuracy)
        ? name : best
    , eligible[0][0]);
  }

  if (prioritize === 'cost') {
    return eligible.reduce((best, [name, config]) =>
      config.costPerMinute < models[best].costPerMinute ? name : best
    , eligible[0][0]);
  }

  // Default: balance speed and accuracy
  return 'nova-2';
}

Parallel Processing

// lib/parallel-transcription.ts
import { pool } from './connection-pool';
import pLimit from 'p-limit';

interface TranscriptionResult {
  file: string;
  transcript: string;
  duration: number;
}

export async function transcribeMultiple(
  audioUrls: string[],
  concurrency = 5
): Promise<TranscriptionResult[]> {
  const limit = pLimit(concurrency);
  const startTime = Date.now();

  const results = await Promise.all(
    audioUrls.map((url, index) =>
      limit(async () => {
        const itemStart = Date.now();

        const result = await pool.execute(async (client) => {
          const { result, error } = await client.listen.prerecorded.transcribeUrl(
            { url },
            { model: 'nova-2', smart_format: true }
          );

          if (error) throw error;
          return result;
        });

        return {
          file: url,
          transcript: result.results.channels[0].alternatives[0].transcript,
          duration: Date.now() - itemStart,
        };
      })
    )
  );

  console.log(`Processed ${audioUrls.length} files in ${Date.now() - startTime}ms`);
  console.log(`Average per file: ${(Date.now() - startTime) / audioUrls.length}ms`);

  return results;
}

Caching Results

// lib/transcription-cache.ts
import { createHash } from 'crypto';
import { redis } from './redis';

interface CacheOptions {
  ttl: number; // seconds
}

export class TranscriptionCache {
  private ttl: number;

  constructor(options: Partial<CacheOptions> = {}) {
    this.ttl = options.ttl ?? 3600; // 1 hour default
  }

  private getCacheKey(audioUrl: string, options: Record<string, unknown>): string {
    const hash = createHash('sha256')
      .update(JSON.stringify({ audioUrl, options }))
      .digest('hex');
    return `transcription:${hash}`;
  }

  async get(
    audioUrl: string,
    options: Record<string, unknown>
  ): Promise<string | null> {
    const key = this.getCacheKey(audioUrl, options);
    return redis.get(key);
  }

  async set(
    audioUrl: string,
    options: Record<string, unknown>,
    transcript: string
  ): Promise<void> {
    const key = this.getCacheKey(audioUrl, options);
    await redis.setex(key, this.ttl, transcript);
  }

  async transcribeWithCache(
    transcribeFn: () => Promise<string>,
    audioUrl: string,
    options: Record<string, unknown>
  ): Promise<{ transcript: string; cached: boolean }> {
    const cached = await this.get(audioUrl, options);
    if (cached) {
      return { transcript: cached, cached: true };
    }

    const transcript = await transcribeFn();
    await this.set(audioUrl, options, transcript);

    return { transcript, cached: false };
  }
}

Performance Metrics

// lib/performance-metrics.ts
import { Histogram, Counter, Gauge } from 'prom-client';

export const transcriptionLatency = new Histogram({
  name: 'deepgram_transcription_latency_seconds',
  help: 'Latency of transcription requests',
  labelNames: ['model', 'status'],
  buckets: [0.5, 1, 2, 5, 10, 30, 60],
});

export const audioDuration = new Histogram({
  name: 'deepgram_audio_duration_seconds',
  help: 'Duration of audio files processed',
  buckets: [10, 30, 60, 120, 300, 600, 1800],
});

export const processingRatio = new Gauge({
  name: 'deepgram_processing_ratio',
  help: 'Ratio of processing time to audio duration',
  labelNames: ['model'],
});

export function measureTranscription(
  audioDurationSec: number,
  processingTimeSec: number,
  model: string
) {
  audioDuration.observe(audioDurationSec);
  processingRatio.labels(model).set(processingTimeSec / audioDurationSec);
}

Resources

Next Steps

Proceed to deepgram-cost-tuning for cost optimization.