| name | fireflies-performance-tuning |
| description | Optimize Fireflies.ai API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Fireflies.ai integrations. Trigger with phrases like "fireflies performance", "optimize fireflies", "fireflies latency", "fireflies caching", "fireflies slow", "fireflies batch". |
| allowed-tools | Read, Write, Edit |
| version | 1.0.0 |
| license | MIT |
| author | Jeremy Longshore <jeremy@intentsolutions.io> |
Fireflies.ai Performance Tuning
Overview
Optimize Fireflies.ai API performance with caching, batching, and connection pooling.
Prerequisites
- Fireflies.ai SDK installed
- Understanding of async patterns
- Redis or in-memory cache available (optional)
- Performance monitoring in place
Latency Benchmarks
| Operation | P50 | P95 | P99 |
|---|---|---|---|
| Read | 50ms | 150ms | 300ms |
| Write | 100ms | 250ms | 500ms |
| List | 75ms | 200ms | 400ms |
Caching Strategy
Response Caching
import { LRUCache } from 'lru-cache';
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 60000, // 1 minute
updateAgeOnGet: true,
});
async function cachedFireflies.aiRequest<T>(
key: string,
fetcher: () => Promise<T>,
ttl?: number
): Promise<T> {
const cached = cache.get(key);
if (cached) return cached as T;
const result = await fetcher();
cache.set(key, result, { ttl });
return result;
}
Redis Caching (Distributed)
import Redis from 'ioredis';
const redis = new Redis(process.env.REDIS_URL);
async function cachedWithRedis<T>(
key: string,
fetcher: () => Promise<T>,
ttlSeconds = 60
): Promise<T> {
const cached = await redis.get(key);
if (cached) return JSON.parse(cached);
const result = await fetcher();
await redis.setex(key, ttlSeconds, JSON.stringify(result));
return result;
}
Request Batching
import DataLoader from 'dataloader';
const firefliesLoader = new DataLoader<string, any>(
async (ids) => {
// Batch fetch from Fireflies.ai
const results = await firefliesClient.batchGet(ids);
return ids.map(id => results.find(r => r.id === id) || null);
},
{
maxBatchSize: 100,
batchScheduleFn: callback => setTimeout(callback, 10),
}
);
// Usage - automatically batched
const [item1, item2, item3] = await Promise.all([
firefliesLoader.load('id-1'),
firefliesLoader.load('id-2'),
firefliesLoader.load('id-3'),
]);
Connection Optimization
import { Agent } from 'https';
// Keep-alive connection pooling
const agent = new Agent({
keepAlive: true,
maxSockets: 10,
maxFreeSockets: 5,
timeout: 30000,
});
const client = new Fireflies.aiClient({
apiKey: process.env.FIREFLIES_API_KEY!,
httpAgent: agent,
});
Pagination Optimization
async function* paginatedFireflies.aiList<T>(
fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }>
): AsyncGenerator<T> {
let cursor: string | undefined;
do {
const { data, nextCursor } = await fetcher(cursor);
for (const item of data) {
yield item;
}
cursor = nextCursor;
} while (cursor);
}
// Usage
for await (const item of paginatedFireflies.aiList(cursor =>
firefliesClient.list({ cursor, limit: 100 })
)) {
await process(item);
}
Performance Monitoring
async function measuredFireflies.aiCall<T>(
operation: string,
fn: () => Promise<T>
): Promise<T> {
const start = performance.now();
try {
const result = await fn();
const duration = performance.now() - start;
console.log({ operation, duration, status: 'success' });
return result;
} catch (error) {
const duration = performance.now() - start;
console.error({ operation, duration, status: 'error', error });
throw error;
}
}
Instructions
Step 1: Establish Baseline
Measure current latency for critical Fireflies.ai operations.
Step 2: Implement Caching
Add response caching for frequently accessed data.
Step 3: Enable Batching
Use DataLoader or similar for automatic request batching.
Step 4: Optimize Connections
Configure connection pooling with keep-alive.
Output
- Reduced API latency
- Caching layer implemented
- Request batching enabled
- Connection pooling configured
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Cache miss storm | TTL expired | Use stale-while-revalidate |
| Batch timeout | Too many items | Reduce batch size |
| Connection exhausted | No pooling | Configure max sockets |
| Memory pressure | Cache too large | Set max cache entries |
Examples
Quick Performance Wrapper
const withPerformance = <T>(name: string, fn: () => Promise<T>) =>
measuredFireflies.aiCall(name, () =>
cachedFireflies.aiRequest(`cache:${name}`, fn)
);
Resources
Next Steps
For cost optimization, see fireflies-cost-tuning.