Claude Code Plugins

Community-maintained marketplace

Feedback
935
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name fireflies-performance-tuning
description Optimize Fireflies.ai API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Fireflies.ai integrations. Trigger with phrases like "fireflies performance", "optimize fireflies", "fireflies latency", "fireflies caching", "fireflies slow", "fireflies batch".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Fireflies.ai Performance Tuning

Overview

Optimize Fireflies.ai API performance with caching, batching, and connection pooling.

Prerequisites

  • Fireflies.ai SDK installed
  • Understanding of async patterns
  • Redis or in-memory cache available (optional)
  • Performance monitoring in place

Latency Benchmarks

Operation P50 P95 P99
Read 50ms 150ms 300ms
Write 100ms 250ms 500ms
List 75ms 200ms 400ms

Caching Strategy

Response Caching

import { LRUCache } from 'lru-cache';

const cache = new LRUCache<string, any>({
  max: 1000,
  ttl: 60000, // 1 minute
  updateAgeOnGet: true,
});

async function cachedFireflies.aiRequest<T>(
  key: string,
  fetcher: () => Promise<T>,
  ttl?: number
): Promise<T> {
  const cached = cache.get(key);
  if (cached) return cached as T;

  const result = await fetcher();
  cache.set(key, result, { ttl });
  return result;
}

Redis Caching (Distributed)

import Redis from 'ioredis';

const redis = new Redis(process.env.REDIS_URL);

async function cachedWithRedis<T>(
  key: string,
  fetcher: () => Promise<T>,
  ttlSeconds = 60
): Promise<T> {
  const cached = await redis.get(key);
  if (cached) return JSON.parse(cached);

  const result = await fetcher();
  await redis.setex(key, ttlSeconds, JSON.stringify(result));
  return result;
}

Request Batching

import DataLoader from 'dataloader';

const firefliesLoader = new DataLoader<string, any>(
  async (ids) => {
    // Batch fetch from Fireflies.ai
    const results = await firefliesClient.batchGet(ids);
    return ids.map(id => results.find(r => r.id === id) || null);
  },
  {
    maxBatchSize: 100,
    batchScheduleFn: callback => setTimeout(callback, 10),
  }
);

// Usage - automatically batched
const [item1, item2, item3] = await Promise.all([
  firefliesLoader.load('id-1'),
  firefliesLoader.load('id-2'),
  firefliesLoader.load('id-3'),
]);

Connection Optimization

import { Agent } from 'https';

// Keep-alive connection pooling
const agent = new Agent({
  keepAlive: true,
  maxSockets: 10,
  maxFreeSockets: 5,
  timeout: 30000,
});

const client = new Fireflies.aiClient({
  apiKey: process.env.FIREFLIES_API_KEY!,
  httpAgent: agent,
});

Pagination Optimization

async function* paginatedFireflies.aiList<T>(
  fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }>
): AsyncGenerator<T> {
  let cursor: string | undefined;

  do {
    const { data, nextCursor } = await fetcher(cursor);
    for (const item of data) {
      yield item;
    }
    cursor = nextCursor;
  } while (cursor);
}

// Usage
for await (const item of paginatedFireflies.aiList(cursor =>
  firefliesClient.list({ cursor, limit: 100 })
)) {
  await process(item);
}

Performance Monitoring

async function measuredFireflies.aiCall<T>(
  operation: string,
  fn: () => Promise<T>
): Promise<T> {
  const start = performance.now();
  try {
    const result = await fn();
    const duration = performance.now() - start;
    console.log({ operation, duration, status: 'success' });
    return result;
  } catch (error) {
    const duration = performance.now() - start;
    console.error({ operation, duration, status: 'error', error });
    throw error;
  }
}

Instructions

Step 1: Establish Baseline

Measure current latency for critical Fireflies.ai operations.

Step 2: Implement Caching

Add response caching for frequently accessed data.

Step 3: Enable Batching

Use DataLoader or similar for automatic request batching.

Step 4: Optimize Connections

Configure connection pooling with keep-alive.

Output

  • Reduced API latency
  • Caching layer implemented
  • Request batching enabled
  • Connection pooling configured

Error Handling

Issue Cause Solution
Cache miss storm TTL expired Use stale-while-revalidate
Batch timeout Too many items Reduce batch size
Connection exhausted No pooling Configure max sockets
Memory pressure Cache too large Set max cache entries

Examples

Quick Performance Wrapper

const withPerformance = <T>(name: string, fn: () => Promise<T>) =>
  measuredFireflies.aiCall(name, () =>
    cachedFireflies.aiRequest(`cache:${name}`, fn)
  );

Resources

Next Steps

For cost optimization, see fireflies-cost-tuning.