Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name gamma-rate-limits
description Understand and manage Gamma API rate limits effectively. Use when hitting rate limits, optimizing API usage, or implementing request queuing systems. Trigger with phrases like "gamma rate limit", "gamma quota", "gamma 429", "gamma throttle", "gamma request limits".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Gamma Rate Limits

Overview

Understand Gamma API rate limits and implement effective strategies for high-volume usage.

Prerequisites

  • Active Gamma API integration
  • Understanding of HTTP headers
  • Basic queuing concepts

Rate Limit Tiers

Plan Requests/min Presentations/day Exports/hour
Free 10 5 10
Pro 60 50 100
Team 200 200 500
Enterprise Custom Custom Custom

Instructions

Step 1: Check Rate Limit Headers

const response = await gamma.presentations.list();

// Rate limit headers
const headers = response.headers;
console.log('Limit:', headers['x-ratelimit-limit']);
console.log('Remaining:', headers['x-ratelimit-remaining']);
console.log('Reset:', new Date(headers['x-ratelimit-reset'] * 1000));

Step 2: Implement Exponential Backoff

async function withBackoff<T>(
  fn: () => Promise<T>,
  options = { maxRetries: 5, baseDelay: 1000 }
): Promise<T> {
  for (let attempt = 0; attempt < options.maxRetries; attempt++) {
    try {
      return await fn();
    } catch (err) {
      if (err.status !== 429 || attempt === options.maxRetries - 1) {
        throw err;
      }

      const delay = err.retryAfter
        ? err.retryAfter * 1000
        : options.baseDelay * Math.pow(2, attempt);

      console.log(`Rate limited. Retrying in ${delay}ms...`);
      await new Promise(r => setTimeout(r, delay));
    }
  }
  throw new Error('Max retries exceeded');
}

// Usage
const result = await withBackoff(() =>
  gamma.presentations.create({ title: 'My Deck', prompt: 'AI overview' })
);

Step 3: Request Queue

class RateLimitedQueue {
  private queue: Array<() => Promise<any>> = [];
  private processing = false;
  private requestsPerMinute: number;
  private interval: number;

  constructor(requestsPerMinute = 60) {
    this.requestsPerMinute = requestsPerMinute;
    this.interval = 60000 / requestsPerMinute;
  }

  async add<T>(fn: () => Promise<T>): Promise<T> {
    return new Promise((resolve, reject) => {
      this.queue.push(async () => {
        try {
          resolve(await fn());
        } catch (err) {
          reject(err);
        }
      });
      this.process();
    });
  }

  private async process() {
    if (this.processing) return;
    this.processing = true;

    while (this.queue.length > 0) {
      const fn = this.queue.shift()!;
      await fn();
      await new Promise(r => setTimeout(r, this.interval));
    }

    this.processing = false;
  }
}

// Usage
const queue = new RateLimitedQueue(30); // 30 req/min

const results = await Promise.all([
  queue.add(() => gamma.presentations.create({ ... })),
  queue.add(() => gamma.presentations.create({ ... })),
  queue.add(() => gamma.presentations.create({ ... })),
]);

Step 4: Monitor Usage

async function getRateLimitStatus() {
  const status = await gamma.rateLimit.status();

  return {
    limit: status.limit,
    remaining: status.remaining,
    percentUsed: ((status.limit - status.remaining) / status.limit * 100).toFixed(1),
    resetAt: new Date(status.reset * 1000),
    resetIn: Math.ceil((status.reset * 1000 - Date.now()) / 1000),
  };
}

// Usage
const status = await getRateLimitStatus();
console.log(`Used ${status.percentUsed}% of rate limit`);
console.log(`Resets in ${status.resetIn} seconds`);

Output

  • Rate limit aware API calls
  • Automatic retry with backoff
  • Request queuing system
  • Usage monitoring dashboard

Error Handling

Scenario Strategy Implementation
Occasional 429 Exponential backoff withBackoff() wrapper
Consistent 429 Request queue RateLimitedQueue class
Near limit Preemptive throttle Check remaining before call
Burst traffic Token bucket Implement token bucket algorithm

Resources

Next Steps

Proceed to gamma-security-basics for security best practices.