Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name langchain-hello-world
description Create a minimal working LangChain example. Use when starting a new LangChain integration, testing your setup, or learning basic LangChain patterns with chains and prompts. Trigger with phrases like "langchain hello world", "langchain example", "langchain quick start", "simple langchain code", "first langchain app".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

LangChain Hello World

Overview

Minimal working example demonstrating core LangChain functionality with chains and prompts.

Prerequisites

  • Completed langchain-install-auth setup
  • Valid LLM provider API credentials configured
  • Python 3.9+ or Node.js 18+ environment ready

Instructions

Step 1: Create Entry File

Create a new file hello_langchain.py for your hello world example.

Step 2: Import and Initialize

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o-mini")

Step 3: Create Your First Chain

from langchain_core.output_parsers import StrOutputParser

prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant."),
    ("user", "{input}")
])

chain = prompt | llm | StrOutputParser()

response = chain.invoke({"input": "Hello, LangChain!"})
print(response)

Output

  • Working Python file with LangChain chain
  • Successful LLM response confirming connection
  • Console output showing:
Hello! I'm your LangChain-powered assistant. How can I help you today?

Error Handling

Error Cause Solution
Import Error SDK not installed Run pip install langchain langchain-openai
Auth Error Invalid credentials Check environment variable is set
Timeout Network issues Increase timeout or check connectivity
Rate Limit Too many requests Wait and retry with exponential backoff
Model Not Found Invalid model name Check available models in provider docs

Examples

Simple Chain (Python)

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()

result = chain.invoke({"topic": "programming"})
print(result)

With Memory (Python)

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, AIMessage

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant."),
    MessagesPlaceholder(variable_name="history"),
    ("user", "{input}")
])

chain = prompt | llm

history = []
response = chain.invoke({"input": "Hi!", "history": history})
print(response.content)

TypeScript Example

import { ChatOpenAI } from "@langchain/openai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";

const llm = new ChatOpenAI({ modelName: "gpt-4o-mini" });
const prompt = ChatPromptTemplate.fromTemplate("Tell me about {topic}");
const chain = prompt.pipe(llm).pipe(new StringOutputParser());

const result = await chain.invoke({ topic: "LangChain" });
console.log(result);

Resources

Next Steps

Proceed to langchain-local-dev-loop for development workflow setup.