Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name langchain-sdk-patterns
description Apply production-ready LangChain SDK patterns for chains, agents, and memory. Use when implementing LangChain integrations, refactoring code, or establishing team coding standards for LangChain applications. Trigger with phrases like "langchain SDK patterns", "langchain best practices", "langchain code patterns", "idiomatic langchain", "langchain architecture".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

LangChain SDK Patterns

Overview

Production-ready patterns for LangChain applications including LCEL chains, structured output, and error handling.

Prerequisites

  • Completed langchain-install-auth setup
  • Familiarity with async/await patterns
  • Understanding of error handling best practices

Core Patterns

Pattern 1: Type-Safe Chain with Pydantic

from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

class SentimentResult(BaseModel):
    """Structured output for sentiment analysis."""
    sentiment: str = Field(description="positive, negative, or neutral")
    confidence: float = Field(description="Confidence score 0-1")
    reasoning: str = Field(description="Brief explanation")

llm = ChatOpenAI(model="gpt-4o-mini")
structured_llm = llm.with_structured_output(SentimentResult)

prompt = ChatPromptTemplate.from_template(
    "Analyze the sentiment of: {text}"
)

chain = prompt | structured_llm

# Returns typed SentimentResult
result: SentimentResult = chain.invoke({"text": "I love LangChain!"})
print(f"Sentiment: {result.sentiment} ({result.confidence})")

Pattern 2: Retry with Fallback

from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables import RunnableWithFallbacks

primary = ChatOpenAI(model="gpt-4o")
fallback = ChatAnthropic(model="claude-3-5-sonnet-20241022")

# Automatically falls back on failure
robust_llm = primary.with_fallbacks([fallback])

response = robust_llm.invoke("Hello!")

Pattern 3: Async Batch Processing

import asyncio
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Summarize: {text}")
chain = prompt | llm

async def process_batch(texts: list[str]) -> list:
    """Process multiple texts concurrently."""
    inputs = [{"text": t} for t in texts]
    results = await chain.abatch(inputs, config={"max_concurrency": 5})
    return results

# Usage
results = asyncio.run(process_batch(["text1", "text2", "text3"]))

Pattern 4: Streaming with Callbacks

from langchain_openai import ChatOpenAI
from langchain_core.callbacks import StreamingStdOutCallbackHandler

llm = ChatOpenAI(
    model="gpt-4o-mini",
    streaming=True,
    callbacks=[StreamingStdOutCallbackHandler()]
)

# Streams tokens to stdout as they arrive
for chunk in llm.stream("Tell me a story"):
    # Each chunk contains partial content
    pass

Pattern 5: Caching for Cost Reduction

from langchain_openai import ChatOpenAI
from langchain_core.globals import set_llm_cache
from langchain_community.cache import SQLiteCache

# Enable SQLite caching
set_llm_cache(SQLiteCache(database_path=".langchain_cache.db"))

llm = ChatOpenAI(model="gpt-4o-mini")

# First call hits API
response1 = llm.invoke("What is 2+2?")

# Second identical call uses cache (no API cost)
response2 = llm.invoke("What is 2+2?")

Output

  • Type-safe chains with Pydantic models
  • Robust error handling with fallbacks
  • Efficient async batch processing
  • Cost-effective caching strategies

Error Handling

Standard Error Pattern

from langchain_core.exceptions import OutputParserException
from openai import RateLimitError, APIError

def safe_invoke(chain, input_data, max_retries=3):
    """Invoke chain with error handling."""
    for attempt in range(max_retries):
        try:
            return chain.invoke(input_data)
        except RateLimitError:
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)
                continue
            raise
        except OutputParserException as e:
            # Handle parsing failures
            return {"error": str(e), "raw": e.llm_output}
        except APIError as e:
            raise RuntimeError(f"API error: {e}")

Resources

Next Steps

Proceed to langchain-core-workflow-a for chains and prompts workflow.