Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name lindy-observability
description Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Lindy Observability

Overview

Implement comprehensive observability for Lindy AI integrations.

Prerequisites

  • Production Lindy integration
  • Observability stack (Datadog, New Relic, Prometheus, etc.)
  • Log aggregation system

Instructions

Step 1: Structured Logging

// lib/logger.ts
import pino from 'pino';

export const logger = pino({
  level: process.env.LOG_LEVEL || 'info',
  formatters: {
    level: (label) => ({ level: label }),
  },
  base: {
    service: 'lindy-integration',
    environment: process.env.NODE_ENV,
  },
});

// Lindy-specific logger
export function lindyLogger(operation: string) {
  return logger.child({ component: 'lindy', operation });
}

Step 2: Instrumented Client

// lib/instrumented-lindy.ts
import { Lindy } from '@lindy-ai/sdk';
import { lindyLogger } from './logger';
import { metrics } from './metrics';
import { tracer } from './tracer';

export class InstrumentedLindy {
  private lindy: Lindy;

  constructor() {
    this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  }

  async runAgent(agentId: string, input: string) {
    const log = lindyLogger('runAgent');
    const span = tracer.startSpan('lindy.agent.run');

    const startTime = Date.now();

    try {
      span.setAttributes({
        'lindy.agent_id': agentId,
        'lindy.input_length': input.length,
      });

      log.info({ agentId, inputLength: input.length }, 'Starting agent run');

      const result = await this.lindy.agents.run(agentId, { input });

      const duration = Date.now() - startTime;

      // Record metrics
      metrics.histogram('lindy.agent.duration', duration, { agentId });
      metrics.counter('lindy.agent.success', 1, { agentId });

      // Log success
      log.info({
        agentId,
        duration,
        outputLength: result.output.length,
      }, 'Agent run completed');

      span.setAttributes({
        'lindy.duration_ms': duration,
        'lindy.output_length': result.output.length,
        'lindy.status': 'success',
      });

      return result;
    } catch (error: any) {
      const duration = Date.now() - startTime;

      // Record error metrics
      metrics.counter('lindy.agent.error', 1, {
        agentId,
        errorCode: error.code,
      });

      // Log error
      log.error({
        agentId,
        duration,
        error: error.message,
        errorCode: error.code,
      }, 'Agent run failed');

      span.setAttributes({
        'lindy.status': 'error',
        'lindy.error': error.message,
      });
      span.recordException(error);

      throw error;
    } finally {
      span.end();
    }
  }
}

Step 3: Metrics Collection

// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';

const registry = new Registry();

export const metrics = {
  agentDuration: new Histogram({
    name: 'lindy_agent_duration_ms',
    help: 'Duration of Lindy agent runs in milliseconds',
    labelNames: ['agent_id', 'status'],
    buckets: [100, 500, 1000, 2000, 5000, 10000, 30000],
    registers: [registry],
  }),

  agentRuns: new Counter({
    name: 'lindy_agent_runs_total',
    help: 'Total number of Lindy agent runs',
    labelNames: ['agent_id', 'status'],
    registers: [registry],
  }),

  apiCalls: new Counter({
    name: 'lindy_api_calls_total',
    help: 'Total Lindy API calls',
    labelNames: ['endpoint', 'status'],
    registers: [registry],
  }),

  // Helper methods
  histogram(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Histogram;
    metric?.observe(labels, value);
  },

  counter(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Counter;
    metric?.inc(labels, value);
  },
};

// Metrics endpoint
export function getMetrics(): Promise<string> {
  return registry.metrics();
}

Step 4: Distributed Tracing

// lib/tracer.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
import { NodeTracerProvider } from '@opentelemetry/sdk-trace-node';
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-base';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';

const provider = new NodeTracerProvider();

provider.addSpanProcessor(
  new SimpleSpanProcessor(
    new OTLPTraceExporter({
      url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
    })
  )
);

provider.register();

export const tracer = trace.getTracer('lindy-integration');

Step 5: Dashboard Configuration

# grafana/dashboards/lindy.json
{
  "title": "Lindy AI Monitoring",
  "panels": [
    {
      "title": "Agent Runs per Minute",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total[1m])",
          "legendFormat": "{{agent_id}}"
        }
      ]
    },
    {
      "title": "P95 Latency",
      "type": "stat",
      "targets": [
        {
          "expr": "histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m]))"
        }
      ]
    },
    {
      "title": "Error Rate",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total{status='error'}[5m]) / rate(lindy_agent_runs_total[5m])"
        }
      ]
    }
  ]
}

Output

  • Structured logging
  • Prometheus metrics
  • Distributed tracing
  • Grafana dashboards
  • Alerting rules

Error Handling

Issue Cause Solution
Missing traces OTEL not configured Set OTEL endpoint
Metrics not visible Wrong labels Check label names
Logs not searchable Missing context Add structured fields

Examples

Alert Configuration

# alerts/lindy.yml
groups:
  - name: lindy
    rules:
      - alert: LindyHighErrorRate
        expr: rate(lindy_agent_runs_total{status="error"}[5m]) > 0.1
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High Lindy error rate"

      - alert: LindyHighLatency
        expr: histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m])) > 10000
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Lindy P95 latency above 10s"

Resources

Next Steps

Proceed to lindy-incident-runbook for incident response.