| name | lindy-observability |
| description | Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing". |
| allowed-tools | Read, Write, Edit |
| version | 1.0.0 |
| license | MIT |
| author | Jeremy Longshore <jeremy@intentsolutions.io> |
Lindy Observability
Overview
Implement comprehensive observability for Lindy AI integrations.
Prerequisites
- Production Lindy integration
- Observability stack (Datadog, New Relic, Prometheus, etc.)
- Log aggregation system
Instructions
Step 1: Structured Logging
// lib/logger.ts
import pino from 'pino';
export const logger = pino({
level: process.env.LOG_LEVEL || 'info',
formatters: {
level: (label) => ({ level: label }),
},
base: {
service: 'lindy-integration',
environment: process.env.NODE_ENV,
},
});
// Lindy-specific logger
export function lindyLogger(operation: string) {
return logger.child({ component: 'lindy', operation });
}
Step 2: Instrumented Client
// lib/instrumented-lindy.ts
import { Lindy } from '@lindy-ai/sdk';
import { lindyLogger } from './logger';
import { metrics } from './metrics';
import { tracer } from './tracer';
export class InstrumentedLindy {
private lindy: Lindy;
constructor() {
this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
}
async runAgent(agentId: string, input: string) {
const log = lindyLogger('runAgent');
const span = tracer.startSpan('lindy.agent.run');
const startTime = Date.now();
try {
span.setAttributes({
'lindy.agent_id': agentId,
'lindy.input_length': input.length,
});
log.info({ agentId, inputLength: input.length }, 'Starting agent run');
const result = await this.lindy.agents.run(agentId, { input });
const duration = Date.now() - startTime;
// Record metrics
metrics.histogram('lindy.agent.duration', duration, { agentId });
metrics.counter('lindy.agent.success', 1, { agentId });
// Log success
log.info({
agentId,
duration,
outputLength: result.output.length,
}, 'Agent run completed');
span.setAttributes({
'lindy.duration_ms': duration,
'lindy.output_length': result.output.length,
'lindy.status': 'success',
});
return result;
} catch (error: any) {
const duration = Date.now() - startTime;
// Record error metrics
metrics.counter('lindy.agent.error', 1, {
agentId,
errorCode: error.code,
});
// Log error
log.error({
agentId,
duration,
error: error.message,
errorCode: error.code,
}, 'Agent run failed');
span.setAttributes({
'lindy.status': 'error',
'lindy.error': error.message,
});
span.recordException(error);
throw error;
} finally {
span.end();
}
}
}
Step 3: Metrics Collection
// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';
const registry = new Registry();
export const metrics = {
agentDuration: new Histogram({
name: 'lindy_agent_duration_ms',
help: 'Duration of Lindy agent runs in milliseconds',
labelNames: ['agent_id', 'status'],
buckets: [100, 500, 1000, 2000, 5000, 10000, 30000],
registers: [registry],
}),
agentRuns: new Counter({
name: 'lindy_agent_runs_total',
help: 'Total number of Lindy agent runs',
labelNames: ['agent_id', 'status'],
registers: [registry],
}),
apiCalls: new Counter({
name: 'lindy_api_calls_total',
help: 'Total Lindy API calls',
labelNames: ['endpoint', 'status'],
registers: [registry],
}),
// Helper methods
histogram(name: string, value: number, labels: Record<string, string>) {
const metric = registry.getSingleMetric(name) as Histogram;
metric?.observe(labels, value);
},
counter(name: string, value: number, labels: Record<string, string>) {
const metric = registry.getSingleMetric(name) as Counter;
metric?.inc(labels, value);
},
};
// Metrics endpoint
export function getMetrics(): Promise<string> {
return registry.metrics();
}
Step 4: Distributed Tracing
// lib/tracer.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
import { NodeTracerProvider } from '@opentelemetry/sdk-trace-node';
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-base';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';
const provider = new NodeTracerProvider();
provider.addSpanProcessor(
new SimpleSpanProcessor(
new OTLPTraceExporter({
url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
})
)
);
provider.register();
export const tracer = trace.getTracer('lindy-integration');
Step 5: Dashboard Configuration
# grafana/dashboards/lindy.json
{
"title": "Lindy AI Monitoring",
"panels": [
{
"title": "Agent Runs per Minute",
"type": "graph",
"targets": [
{
"expr": "rate(lindy_agent_runs_total[1m])",
"legendFormat": "{{agent_id}}"
}
]
},
{
"title": "P95 Latency",
"type": "stat",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m]))"
}
]
},
{
"title": "Error Rate",
"type": "graph",
"targets": [
{
"expr": "rate(lindy_agent_runs_total{status='error'}[5m]) / rate(lindy_agent_runs_total[5m])"
}
]
}
]
}
Output
- Structured logging
- Prometheus metrics
- Distributed tracing
- Grafana dashboards
- Alerting rules
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Missing traces | OTEL not configured | Set OTEL endpoint |
| Metrics not visible | Wrong labels | Check label names |
| Logs not searchable | Missing context | Add structured fields |
Examples
Alert Configuration
# alerts/lindy.yml
groups:
- name: lindy
rules:
- alert: LindyHighErrorRate
expr: rate(lindy_agent_runs_total{status="error"}[5m]) > 0.1
for: 5m
labels:
severity: critical
annotations:
summary: "High Lindy error rate"
- alert: LindyHighLatency
expr: histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m])) > 10000
for: 5m
labels:
severity: warning
annotations:
summary: "Lindy P95 latency above 10s"
Resources
Next Steps
Proceed to lindy-incident-runbook for incident response.