| name | openrouter-hello-world |
| description | Create your first OpenRouter API request with a simple example. Use when learning OpenRouter or testing your setup. Trigger with phrases like 'openrouter hello world', 'openrouter first request', 'openrouter quickstart', 'test openrouter'. |
| allowed-tools | Read, Write, Edit, Grep |
| version | 1.0.0 |
| license | MIT |
| author | Jeremy Longshore <jeremy@intentsolutions.io> |
OpenRouter Hello World
Overview
This skill provides a minimal working example to verify your OpenRouter integration is functioning and introduces the basic request/response pattern.
Prerequisites
- OpenRouter API key configured
- Python 3.8+ or Node.js 18+
- OpenAI SDK installed
Instructions
Follow these steps to implement this skill:
- Verify Prerequisites: Ensure all prerequisites listed above are met
- Review the Implementation: Study the code examples and patterns below
- Adapt to Your Environment: Modify configuration values for your setup
- Test the Integration: Run the verification steps to confirm functionality
- Monitor in Production: Set up appropriate logging and monitoring
Overview
This skill provides a minimal working example to verify your OpenRouter integration is functioning and introduces the basic request/response pattern.
Prerequisites
- OpenRouter API key configured
- Python 3.8+ or Node.js 18+
- OpenAI SDK installed
Your First Request
cURL
curl https://openrouter.ai/api/v1/chat/completions \
-H "Authorization: Bearer $OPENROUTER_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "openai/gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Say hello!"}
]
}'
Response
{
"id": "gen-abc123",
"model": "openai/gpt-3.5-turbo",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 9,
"total_tokens": 19
}
}
Python Example
Basic Request
import os
from openai import OpenAI
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=os.environ.get("OPENROUTER_API_KEY"),
)
response = client.chat.completions.create(
model="openai/gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Say hello!"}
]
)
print(response.choices[0].message.content)
With System Message
response = client.chat.completions.create(
model="anthropic/claude-3-sonnet",
messages=[
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": "Write a Python hello world"}
]
)
TypeScript Example
Basic Request
import OpenAI from 'openai';
const client = new OpenAI({
baseURL: 'https://openrouter.ai/api/v1',
apiKey: process.env.OPENROUTER_API_KEY,
});
async function main() {
const response = await client.chat.completions.create({
model: 'openai/gpt-3.5-turbo',
messages: [
{ role: 'user', content: 'Say hello!' }
],
});
console.log(response.choices[0].message.content);
}
main();
With Streaming
const stream = await client.chat.completions.create({
model: 'openai/gpt-4-turbo',
messages: [{ role: 'user', content: 'Write a poem' }],
stream: true,
});
for await (const chunk of stream) {
process.stdout.write(chunk.choices[0]?.delta?.content || '');
}
Try Different Models
OpenAI Models
# GPT-4 Turbo
response = client.chat.completions.create(
model="openai/gpt-4-turbo",
messages=[{"role": "user", "content": "Hello!"}]
)
# GPT-4o
response = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{"role": "user", "content": "Hello!"}]
)
Anthropic Models
# Claude 3.5 Sonnet
response = client.chat.completions.create(
model="anthropic/claude-3.5-sonnet",
messages=[{"role": "user", "content": "Hello!"}]
)
# Claude 3 Opus
response = client.chat.completions.create(
model="anthropic/claude-3-opus",
messages=[{"role": "user", "content": "Hello!"}]
)
Open Source Models
# Llama 3.1 70B
response = client.chat.completions.create(
model="meta-llama/llama-3.1-70b-instruct",
messages=[{"role": "user", "content": "Hello!"}]
)
# Mixtral
response = client.chat.completions.create(
model="mistralai/mixtral-8x7b-instruct",
messages=[{"role": "user", "content": "Hello!"}]
)
Request Parameters
Temperature
response = client.chat.completions.create(
model="openai/gpt-4-turbo",
messages=[{"role": "user", "content": "Write a story"}],
temperature=0.7, # 0-2, higher = more creative
)
Max Tokens
response = client.chat.completions.create(
model="openai/gpt-4-turbo",
messages=[{"role": "user", "content": "Summarize..."}],
max_tokens=500, # Limit response length
)
Top P
response = client.chat.completions.create(
model="openai/gpt-4-turbo",
messages=[{"role": "user", "content": "..."}],
top_p=0.9, # Nucleus sampling
)
Understanding the Response
Key Fields
response = client.chat.completions.create(...)
# The generated text
content = response.choices[0].message.content
# Why it stopped
finish_reason = response.choices[0].finish_reason
# "stop" = natural completion
# "length" = hit max_tokens
# "tool_calls" = function calling
# Token usage (for cost tracking)
usage = response.usage
print(f"Prompt: {usage.prompt_tokens}")
print(f"Completion: {usage.completion_tokens}")
print(f"Total: {usage.total_tokens}")
# Model used (may differ if fallback triggered)
model = response.model
Quick Comparison
Compare Models
models = [
"openai/gpt-3.5-turbo",
"anthropic/claude-3-haiku",
"meta-llama/llama-3.1-8b-instruct",
]
prompt = "Explain quantum computing in one sentence."
for model in models:
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=100
)
print(f"{model}:")
print(response.choices[0].message.content)
print()
Next Steps
After hello world:
- Explore model catalog
- Set up fallbacks
- Implement streaming
- Add error handling
- Configure for production
Output
Successful execution produces:
- Working OpenRouter integration
- Verified API connectivity
- Example responses demonstrating functionality
Error Handling
Common errors and solutions:
- 401 Unauthorized: Check API key format (must start with
sk-or-) - 429 Rate Limited: Implement exponential backoff
- 500 Server Error: Retry with backoff, check OpenRouter status page
- Model Not Found: Verify model ID includes provider prefix
Examples
See code examples in sections above for complete, runnable implementations.
Resources
Output
Successful execution produces:
- Working OpenRouter integration
- Verified API connectivity
- Example responses demonstrating functionality
Error Handling
Common errors and solutions:
- 401 Unauthorized: Check API key format (must start with
sk-or-) - 429 Rate Limited: Implement exponential backoff
- 500 Server Error: Retry with backoff, check OpenRouter status page
- Model Not Found: Verify model ID includes provider prefix
Examples
See code examples in sections above for complete, runnable implementations.