Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name retellai-observability
description Set up comprehensive observability for Retell AI integrations with metrics, traces, and alerts. Use when implementing monitoring for Retell AI operations, setting up dashboards, or configuring alerting for Retell AI integration health. Trigger with phrases like "retellai monitoring", "retellai metrics", "retellai observability", "monitor retellai", "retellai alerts", "retellai tracing".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Retell AI Observability

Overview

Set up comprehensive observability for Retell AI integrations.

Prerequisites

  • Prometheus or compatible metrics backend
  • OpenTelemetry SDK installed
  • Grafana or similar dashboarding tool
  • AlertManager configured

Metrics Collection

Key Metrics

Metric Type Description
retellai_requests_total Counter Total API requests
retellai_request_duration_seconds Histogram Request latency
retellai_errors_total Counter Error count by type
retellai_rate_limit_remaining Gauge Rate limit headroom

Prometheus Metrics

import { Registry, Counter, Histogram, Gauge } from 'prom-client';

const registry = new Registry();

const requestCounter = new Counter({
  name: 'retellai_requests_total',
  help: 'Total Retell AI API requests',
  labelNames: ['method', 'status'],
  registers: [registry],
});

const requestDuration = new Histogram({
  name: 'retellai_request_duration_seconds',
  help: 'Retell AI request duration',
  labelNames: ['method'],
  buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
  registers: [registry],
});

const errorCounter = new Counter({
  name: 'retellai_errors_total',
  help: 'Retell AI errors by type',
  labelNames: ['error_type'],
  registers: [registry],
});

Instrumented Client

async function instrumentedRequest<T>(
  method: string,
  operation: () => Promise<T>
): Promise<T> {
  const timer = requestDuration.startTimer({ method });

  try {
    const result = await operation();
    requestCounter.inc({ method, status: 'success' });
    return result;
  } catch (error: any) {
    requestCounter.inc({ method, status: 'error' });
    errorCounter.inc({ error_type: error.code || 'unknown' });
    throw error;
  } finally {
    timer();
  }
}

Distributed Tracing

OpenTelemetry Setup

import { trace, SpanStatusCode } from '@opentelemetry/api';

const tracer = trace.getTracer('retellai-client');

async function tracedRetell AICall<T>(
  operationName: string,
  operation: () => Promise<T>
): Promise<T> {
  return tracer.startActiveSpan(`retellai.${operationName}`, async (span) => {
    try {
      const result = await operation();
      span.setStatus({ code: SpanStatusCode.OK });
      return result;
    } catch (error: any) {
      span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
      span.recordException(error);
      throw error;
    } finally {
      span.end();
    }
  });
}

Logging Strategy

Structured Logging

import pino from 'pino';

const logger = pino({
  name: 'retellai',
  level: process.env.LOG_LEVEL || 'info',
});

function logRetell AIOperation(
  operation: string,
  data: Record<string, any>,
  duration: number
) {
  logger.info({
    service: 'retellai',
    operation,
    duration_ms: duration,
    ...data,
  });
}

Alert Configuration

Prometheus AlertManager Rules

# retellai_alerts.yaml
groups:
  - name: retellai_alerts
    rules:
      - alert: Retell AIHighErrorRate
        expr: |
          rate(retellai_errors_total[5m]) /
          rate(retellai_requests_total[5m]) > 0.05
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Retell AI error rate > 5%"

      - alert: Retell AIHighLatency
        expr: |
          histogram_quantile(0.95,
            rate(retellai_request_duration_seconds_bucket[5m])
          ) > 2
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Retell AI P95 latency > 2s"

      - alert: Retell AIDown
        expr: up{job="retellai"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "Retell AI integration is down"

Dashboard

Grafana Panel Queries

{
  "panels": [
    {
      "title": "Retell AI Request Rate",
      "targets": [{
        "expr": "rate(retellai_requests_total[5m])"
      }]
    },
    {
      "title": "Retell AI Latency P50/P95/P99",
      "targets": [{
        "expr": "histogram_quantile(0.5, rate(retellai_request_duration_seconds_bucket[5m]))"
      }]
    }
  ]
}

Instructions

Step 1: Set Up Metrics Collection

Implement Prometheus counters, histograms, and gauges for key operations.

Step 2: Add Distributed Tracing

Integrate OpenTelemetry for end-to-end request tracing.

Step 3: Configure Structured Logging

Set up JSON logging with consistent field names.

Step 4: Create Alert Rules

Define Prometheus alerting rules for error rates and latency.

Output

  • Metrics collection enabled
  • Distributed tracing configured
  • Structured logging implemented
  • Alert rules deployed

Error Handling

Issue Cause Solution
Missing metrics No instrumentation Wrap client calls
Trace gaps Missing propagation Check context headers
Alert storms Wrong thresholds Tune alert rules
High cardinality Too many labels Reduce label values

Examples

Quick Metrics Endpoint

app.get('/metrics', async (req, res) => {
  res.set('Content-Type', registry.contentType);
  res.send(await registry.metrics());
});

Resources

Next Steps

For incident response, see retellai-incident-runbook.