Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name vercel-observability
description Set up comprehensive observability for Vercel integrations with metrics, traces, and alerts. Use when implementing monitoring for Vercel operations, setting up dashboards, or configuring alerting for Vercel integration health. Trigger with phrases like "vercel monitoring", "vercel metrics", "vercel observability", "monitor vercel", "vercel alerts", "vercel tracing".
allowed-tools Read, Write, Edit
version 1.0.0
license MIT
author Jeremy Longshore <jeremy@intentsolutions.io>

Vercel Observability

Overview

Set up comprehensive observability for Vercel integrations.

Prerequisites

  • Prometheus or compatible metrics backend
  • OpenTelemetry SDK installed
  • Grafana or similar dashboarding tool
  • AlertManager configured

Metrics Collection

Key Metrics

Metric Type Description
vercel_requests_total Counter Total API requests
vercel_request_duration_seconds Histogram Request latency
vercel_errors_total Counter Error count by type
vercel_rate_limit_remaining Gauge Rate limit headroom

Prometheus Metrics

import { Registry, Counter, Histogram, Gauge } from 'prom-client';

const registry = new Registry();

const requestCounter = new Counter({
  name: 'vercel_requests_total',
  help: 'Total Vercel API requests',
  labelNames: ['method', 'status'],
  registers: [registry],
});

const requestDuration = new Histogram({
  name: 'vercel_request_duration_seconds',
  help: 'Vercel request duration',
  labelNames: ['method'],
  buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
  registers: [registry],
});

const errorCounter = new Counter({
  name: 'vercel_errors_total',
  help: 'Vercel errors by type',
  labelNames: ['error_type'],
  registers: [registry],
});

Instrumented Client

async function instrumentedRequest<T>(
  method: string,
  operation: () => Promise<T>
): Promise<T> {
  const timer = requestDuration.startTimer({ method });

  try {
    const result = await operation();
    requestCounter.inc({ method, status: 'success' });
    return result;
  } catch (error: any) {
    requestCounter.inc({ method, status: 'error' });
    errorCounter.inc({ error_type: error.code || 'unknown' });
    throw error;
  } finally {
    timer();
  }
}

Distributed Tracing

OpenTelemetry Setup

import { trace, SpanStatusCode } from '@opentelemetry/api';

const tracer = trace.getTracer('vercel-client');

async function tracedVercelCall<T>(
  operationName: string,
  operation: () => Promise<T>
): Promise<T> {
  return tracer.startActiveSpan(`vercel.${operationName}`, async (span) => {
    try {
      const result = await operation();
      span.setStatus({ code: SpanStatusCode.OK });
      return result;
    } catch (error: any) {
      span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
      span.recordException(error);
      throw error;
    } finally {
      span.end();
    }
  });
}

Logging Strategy

Structured Logging

import pino from 'pino';

const logger = pino({
  name: 'vercel',
  level: process.env.LOG_LEVEL || 'info',
});

function logVercelOperation(
  operation: string,
  data: Record<string, any>,
  duration: number
) {
  logger.info({
    service: 'vercel',
    operation,
    duration_ms: duration,
    ...data,
  });
}

Alert Configuration

Prometheus AlertManager Rules

# vercel_alerts.yaml
groups:
  - name: vercel_alerts
    rules:
      - alert: VercelHighErrorRate
        expr: |
          rate(vercel_errors_total[5m]) /
          rate(vercel_requests_total[5m]) > 0.05
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Vercel error rate > 5%"

      - alert: VercelHighLatency
        expr: |
          histogram_quantile(0.95,
            rate(vercel_request_duration_seconds_bucket[5m])
          ) > 2
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Vercel P95 latency > 2s"

      - alert: VercelDown
        expr: up{job="vercel"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "Vercel integration is down"

Dashboard

Grafana Panel Queries

{
  "panels": [
    {
      "title": "Vercel Request Rate",
      "targets": [{
        "expr": "rate(vercel_requests_total[5m])"
      }]
    },
    {
      "title": "Vercel Latency P50/P95/P99",
      "targets": [{
        "expr": "histogram_quantile(0.5, rate(vercel_request_duration_seconds_bucket[5m]))"
      }]
    }
  ]
}

Instructions

Step 1: Set Up Metrics Collection

Implement Prometheus counters, histograms, and gauges for key operations.

Step 2: Add Distributed Tracing

Integrate OpenTelemetry for end-to-end request tracing.

Step 3: Configure Structured Logging

Set up JSON logging with consistent field names.

Step 4: Create Alert Rules

Define Prometheus alerting rules for error rates and latency.

Output

  • Metrics collection enabled
  • Distributed tracing configured
  • Structured logging implemented
  • Alert rules deployed

Error Handling

Issue Cause Solution
Missing metrics No instrumentation Wrap client calls
Trace gaps Missing propagation Check context headers
Alert storms Wrong thresholds Tune alert rules
High cardinality Too many labels Reduce label values

Examples

Quick Metrics Endpoint

app.get('/metrics', async (req, res) => {
  res.set('Content-Type', registry.contentType);
  res.send(await registry.metrics());
});

Resources

Next Steps

For incident response, see vercel-incident-runbook.