| name | Google Cloud Agent SDK Master |
| description | Automatic activation for ALL Google Cloud Agent Development Kit (ADK) and Agent Starter Pack operations - multi-agent systems, containerized deployment, RAG agents, and production orchestration. **TRIGGER PHRASES:** - "adk", "agent development kit", "agent starter pack", "multi-agent", "build agent" - "cloud run agent", "gke deployment", "agent engine", "containerized agent" - "rag agent", "react agent", "agent orchestration", "agent templates" **AUTO-INVOKES FOR:** - Agent creation and scaffolding - Multi-agent system design - Containerized agent deployment - RAG (Retrieval-Augmented Generation) implementation - CI/CD pipeline setup for agents - Agent evaluation and monitoring |
Google Cloud Agent SDK Master - Production-Ready Agent Systems
This Agent Skill provides comprehensive mastery of Google's Agent Development Kit (ADK) and Agent Starter Pack for building and deploying production-grade containerized agents.
Core Capabilities
🤖 Agent Development Kit (ADK)
Framework Overview:
- Open-source Python framework from Google
- Same framework powering Google Agentspace and CES
- Build production agents in <100 lines of code
- Model-agnostic (optimized for Gemini)
- Deployment-agnostic (local, Cloud Run, GKE, Agent Engine)
Supported Agent Types:
- LLM Agents: Dynamic routing with intelligence
- Workflow Agents:
- Sequential: Linear execution
- Loop: Iterative processing
- Parallel: Concurrent execution
- Custom Agents: User-defined implementations
- Multi-agent Systems: Hierarchical coordination
Key Features:
- Flexible orchestration (workflow & LLM-driven)
- Tool ecosystem (search, code execution, custom functions)
- Third-party integrations (LangChain, CrewAI)
- Agents-as-tools capability
- Built-in evaluation framework
- Cloud Trace integration
📦 Agent Starter Pack
Production Templates:
- adk_base - ReAct agent using ADK
- agentic_rag - Document retrieval + Q&A with search
- langgraph_base_react - LangGraph ReAct implementation
- crewai_coding_crew - Multi-agent coding system
- adk_live - Multimodal RAG (audio/video/text)
Infrastructure Automation:
- CI/CD setup with single command
- GitHub Actions or Cloud Build pipelines
- Multi-environment support (dev, staging, prod)
- Automated testing and evaluation
- Deployment rollback mechanisms
🚀 Deployment Targets
1. Vertex AI Agent Engine
- Fully managed runtime
- Auto-scaling and load balancing
- Built-in observability
- Serverless architecture
- Best for: Production-scale agents
2. Cloud Run
- Containerized serverless
- Pay-per-use pricing
- Custom domain support
- Traffic splitting
- Best for: Web-facing agents
3. Google Kubernetes Engine (GKE)
- Full container orchestration
- Advanced networking
- Resource management
- Multi-cluster support
- Best for: Complex multi-agent systems
4. Local/Docker
- Development and testing
- Custom infrastructure
- On-premises deployment
- Best for: POC and debugging
🔧 Technical Implementation
Installation:
# Agent Starter Pack (recommended)
pip install agent-starter-pack
# or direct from GitHub
uvx agent-starter-pack create my-agent
# ADK only
pip install google-cloud-aiplatform[adk,agent_engines]>=1.111
Create Agent (ADK):
from google.cloud.aiplatform import agent
from vertexai.preview.agents import ADKAgent
# Simple ReAct agent
@agent.adk_agent
class MyAgent(ADKAgent):
def __init__(self):
super().__init__(
model="gemini-2.5-pro",
tools=[search_tool, code_exec_tool]
)
def run(self, query: str):
return self.generate(query)
# Multi-agent orchestration
class OrchestratorAgent(ADKAgent):
def __init__(self):
self.research_agent = ResearchAgent()
self.analysis_agent = AnalysisAgent()
self.writer_agent = WriterAgent()
def run(self, task: str):
research = self.research_agent.run(task)
analysis = self.analysis_agent.run(research)
output = self.writer_agent.run(analysis)
return output
Using Agent Starter Pack:
# Create project with template
uvx agent-starter-pack create my-rag-agent \
--template agentic_rag \
--deployment cloud_run
# Generates complete structure:
my-rag-agent/
├── src/
│ ├── agent.py # Agent implementation
│ ├── tools/ # Custom tools
│ └── config.py # Configuration
├── deployment/
│ ├── Dockerfile
│ ├── cloudbuild.yaml
│ └── terraform/
├── tests/
│ ├── unit_tests.py
│ └── integration_tests.py
└── .github/workflows/ # CI/CD pipelines
Deploy to Cloud Run:
# Using ADK CLI
adk deploy \
--target cloud_run \
--region us-central1 \
--service-account sa@project.iam.gserviceaccount.com
# Manual with Docker
docker build -t gcr.io/PROJECT/agent:latest .
docker push gcr.io/PROJECT/agent:latest
gcloud run deploy agent \
--image gcr.io/PROJECT/agent:latest \
--region us-central1 \
--allow-unauthenticated
Deploy to Agent Engine:
# Using Agent Starter Pack
asp deploy \
--env production \
--target agent_engine
# Manual deployment
from google.cloud.aiplatform import agent_engines
agent_engines.deploy_agent(
agent_id="my-agent",
project="PROJECT_ID",
location="us-central1"
)
📊 RAG Agent Implementation
Vector Search Integration:
from vertexai.preview.rag import VectorSearchTool
from google.cloud import aiplatform
# Set up vector search
vector_search = VectorSearchTool(
index_endpoint="projects/PROJECT/locations/LOCATION/indexEndpoints/INDEX_ID",
deployed_index_id="deployed_index"
)
# RAG agent with ADK
class RAGAgent(ADKAgent):
def __init__(self):
super().__init__(
model="gemini-2.5-pro",
tools=[vector_search, web_search_tool]
)
def run(self, query: str):
# Retrieves relevant docs automatically
response = self.generate(
f"Answer this using retrieved context: {query}"
)
return response
Vertex AI Search Integration:
from vertexai.preview.search import VertexAISearchTool
# Enterprise search integration
vertex_search = VertexAISearchTool(
data_store_id="DATA_STORE_ID",
project="PROJECT_ID"
)
agent = ADKAgent(
model="gemini-2.5-pro",
tools=[vertex_search]
)
🔄 CI/CD Automation
GitHub Actions (auto-generated):
name: Deploy Agent
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Test Agent
run: pytest tests/
- name: Deploy to Cloud Run
run: |
gcloud run deploy agent \
--source . \
--region us-central1
Cloud Build Pipeline:
steps:
# Build container
- name: 'gcr.io/cloud-builders/docker'
args: ['build', '-t', 'gcr.io/$PROJECT_ID/agent', '.']
# Run tests
- name: 'gcr.io/$PROJECT_ID/agent'
args: ['pytest', 'tests/']
# Deploy to Cloud Run
- name: 'gcr.io/cloud-builders/gcloud'
args:
- 'run'
- 'deploy'
- 'agent'
- '--image=gcr.io/$PROJECT_ID/agent'
- '--region=us-central1'
🎯 Multi-Agent Orchestration
Hierarchical Agents:
# Coordinator agent with specialized sub-agents
class ProjectManagerAgent(ADKAgent):
def __init__(self):
self.researcher = ResearchAgent()
self.analyst = AnalysisAgent()
self.writer = WriterAgent()
self.reviewer = ReviewAgent()
def run(self, project_brief: str):
# Coordinate multiple agents
research = self.researcher.run(project_brief)
analysis = self.analyst.run(research)
draft = self.writer.run(analysis)
final = self.reviewer.run(draft)
return final
Parallel Agent Execution:
import asyncio
class ParallelResearchAgent(ADKAgent):
async def research_topic(self, topics: list[str]):
# Run multiple agents concurrently
tasks = [
self.specialized_agent(topic)
for topic in topics
]
results = await asyncio.gather(*tasks)
return self.synthesize(results)
📈 Evaluation & Monitoring
Built-in Evaluation:
from google.cloud.aiplatform import agent_evaluation
# Define evaluation metrics
eval_config = agent_evaluation.EvaluationConfig(
metrics=["accuracy", "relevance", "safety"],
test_dataset="gs://bucket/eval_data.jsonl"
)
# Run evaluation
results = agent.evaluate(eval_config)
print(f"Accuracy: {results.accuracy}")
print(f"Relevance: {results.relevance}")
Cloud Trace Integration:
from google.cloud import trace_v1
# Automatic tracing
@traced_agent
class MonitoredAgent(ADKAgent):
def run(self, query: str):
# All calls automatically traced
with self.trace_span("retrieval"):
docs = self.retrieve(query)
with self.trace_span("generation"):
response = self.generate(query, docs)
return response
🔒 Security & Best Practices
1. Service Account Management:
# Create minimal-permission service account
gcloud iam service-accounts create agent-sa \
--display-name "Agent Service Account"
# Grant only required permissions
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:agent-sa@PROJECT.iam.gserviceaccount.com" \
--role="roles/aiplatform.user"
2. Secret Management:
from google.cloud import secretmanager
def get_api_key():
client = secretmanager.SecretManagerServiceClient()
name = "projects/PROJECT/secrets/api-key/versions/latest"
response = client.access_secret_version(name=name)
return response.payload.data.decode('UTF-8')
3. VPC Service Controls:
# Enable VPC SC for data security
gcloud access-context-manager perimeters create agent-perimeter \
--resources=projects/PROJECT_ID \
--restricted-services=aiplatform.googleapis.com
💰 Cost Optimization
Strategies:
- Use Gemini 2.5 Flash for most operations
- Cache embeddings for RAG systems
- Implement request batching
- Use preemptible GKE nodes
- Monitor token usage in Cloud Monitoring
Pricing Examples:
- Cloud Run: $0.00024/GB-second
- Agent Engine: Pay-per-request pricing
- GKE: Standard cluster costs
- Gemini API: $3.50/1M tokens (Pro)
📚 Reference Architecture
Production Agent System:
┌─────────────────┐
│ Load Balancer │
└────────┬────────┘
│
┌────▼────┐
│Cloud Run│ (Agent containers)
└────┬────┘
│
┌────▼──────────┐
│ Agent Engine │ (Orchestration)
└────┬──────────┘
│
┌────▼────────────────┐
│ Vertex AI Search │ (RAG)
│ Vector Search │
│ Gemini 2.5 Pro │
└─────────────────────┘
🎯 Best Practices for Jeremy
1. Start with Templates:
# Use Agent Starter Pack templates
uvx agent-starter-pack create my-agent --template agentic_rag
2. Local Development:
# Test locally first
adk serve --port 8080
curl http://localhost:8080/query -d '{"question": "test"}'
3. Gradual Deployment:
# Deploy to dev → staging → prod
asp deploy --env dev
# Test thoroughly
asp deploy --env staging
# Final production push
asp deploy --env production
4. Monitor Everything:
- Enable Cloud Trace
- Set up error reporting
- Track token usage
- Monitor response times
- Set up alerting
📖 Official Documentation
Core Resources:
- ADK Docs: https://google.github.io/adk-docs/
- Agent Starter Pack: https://github.com/GoogleCloudPlatform/agent-starter-pack
- Agent Engine: https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
- Agent Builder: https://cloud.google.com/products/agent-builder
Tutorials:
- Building AI Agents: https://codelabs.developers.google.com/devsite/codelabs/building-ai-agents-vertexai
- Multi-agent Systems: https://cloud.google.com/blog/products/ai-machine-learning/build-and-manage-multi-system-agents-with-vertex-ai
When This Skill Activates
This skill automatically activates when you mention:
- Agent development, ADK, or Agent Starter Pack
- Multi-agent systems or orchestration
- Containerized agent deployment
- Cloud Run, GKE, or Agent Engine deployment
- RAG agents or ReAct agents
- Agent templates or scaffolding
- CI/CD for agents
- Production agent systems
Integration with Other Services
Google Cloud:
- Vertex AI (Gemini, Search, Vector Search)
- Cloud Storage (data storage)
- Cloud Functions (triggers)
- Cloud Scheduler (automation)
- Cloud Logging & Monitoring
Third-party:
- LangChain integration
- CrewAI orchestration
- Custom tool frameworks
Success Metrics
Track:
- Agent response time (target: <2s)
- Evaluation scores (target: >85% accuracy)
- Deployment frequency (target: daily)
- System uptime (target: 99.9%)
- Cost per query (target: <$0.01)
This skill makes Jeremy a Google Cloud agent architecture expert with instant access to ADK, Agent Starter Pack, and production deployment patterns.