Claude Code Plugins

Community-maintained marketplace

Feedback

cloudflare-workers-ai

@jezweb/claude-skills
20
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name cloudflare-workers-ai
description Complete knowledge domain for Cloudflare Workers AI - Run AI models on serverless GPUs across Cloudflare's global network. Use when: implementing AI inference on Workers, running LLM models, generating text/images with AI, configuring Workers AI bindings, implementing AI streaming, using AI Gateway, integrating with embeddings/RAG systems, or encountering "AI_ERROR", rate limit errors, model not found, token limit exceeded, or neurons exceeded errors. Keywords: workers ai, cloudflare ai, ai bindings, llm workers, @cf/meta/llama, workers ai models, ai inference, cloudflare llm, ai streaming, text generation ai, ai embeddings, image generation ai, workers ai rag, ai gateway, llama workers, flux image generation, stable diffusion workers, vision models ai, ai chat completion, AI_ERROR, rate limit ai, model not found, token limit exceeded, neurons exceeded, ai quota exceeded, streaming failed, model unavailable, workers ai hono, ai gateway workers, vercel ai sdk workers, openai compatible workers, workers ai vectorize
license MIT

Cloudflare Workers AI - Complete Reference

Production-ready knowledge domain for building AI-powered applications with Cloudflare Workers AI.

Status: Production Ready ✅ Last Updated: 2025-10-21 Dependencies: cloudflare-worker-base (for Worker setup) Latest Versions: wrangler@4.43.0, @cloudflare/workers-types@4.20251014.0


Table of Contents

  1. Quick Start (5 minutes)
  2. Workers AI API Reference
  3. Model Selection Guide
  4. Common Patterns
  5. AI Gateway Integration
  6. Rate Limits & Pricing
  7. Production Checklist

Quick Start (5 minutes)

1. Add AI Binding

wrangler.jsonc:

{
  "ai": {
    "binding": "AI"
  }
}

2. Run Your First Model

export interface Env {
  AI: Ai;
}

export default {
  async fetch(request: Request, env: Env): Promise<Response> {
    const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
      prompt: 'What is Cloudflare?',
    });

    return Response.json(response);
  },
};

3. Add Streaming (Recommended)

const stream = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [{ role: 'user', content: 'Tell me a story' }],
  stream: true, // Always use streaming for text generation!
});

return new Response(stream, {
  headers: { 'content-type': 'text/event-stream' },
});

Why streaming?

  • Prevents buffering large responses in memory
  • Faster time-to-first-token
  • Better user experience for long-form content
  • Avoids Worker timeout issues

Workers AI API Reference

env.AI.run()

Run an AI model inference.

Signature:

async env.AI.run(
  model: string,
  inputs: ModelInputs,
  options?: { gateway?: { id: string; skipCache?: boolean } }
): Promise<ModelOutput | ReadableStream>

Parameters:

  • model (string, required) - Model ID (e.g., @cf/meta/llama-3.1-8b-instruct)
  • inputs (object, required) - Model-specific inputs
  • options (object, optional) - Additional options
    • gateway (object) - AI Gateway configuration
      • id (string) - Gateway ID
      • skipCache (boolean) - Skip AI Gateway cache

Returns:

  • Non-streaming: Promise<ModelOutput> - JSON response
  • Streaming: ReadableStream - Server-sent events stream

Text Generation Models

Input Format:

{
  messages?: Array<{ role: 'system' | 'user' | 'assistant'; content: string }>;
  prompt?: string; // Deprecated, use messages
  stream?: boolean; // Default: false
  max_tokens?: number; // Max tokens to generate
  temperature?: number; // 0.0-1.0, default varies by model
  top_p?: number; // 0.0-1.0
  top_k?: number;
}

Output Format (Non-Streaming):

{
  response: string; // Generated text
}

Example:

const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is TypeScript?' },
  ],
  stream: false,
});

console.log(response.response);

Text Embeddings Models

Input Format:

{
  text: string | string[]; // Single text or array of texts
}

Output Format:

{
  shape: number[]; // [batch_size, embedding_dimensions]
  data: number[][]; // Array of embedding vectors
}

Example:

const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
  text: ['Hello world', 'Cloudflare Workers'],
});

console.log(embeddings.shape); // [2, 768]
console.log(embeddings.data[0]); // [0.123, -0.456, ...]

Image Generation Models

Input Format:

{
  prompt: string; // Text description
  num_steps?: number; // Default: 20
  guidance?: number; // CFG scale, default: 7.5
  strength?: number; // For img2img, default: 1.0
  image?: number[][]; // For img2img (base64 or array)
}

Output Format:

  • Binary image data (PNG/JPEG)

Example:

const imageStream = await env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
  prompt: 'A beautiful sunset over mountains',
});

return new Response(imageStream, {
  headers: { 'content-type': 'image/png' },
});

Vision Models

Input Format:

{
  messages: Array<{
    role: 'user' | 'assistant';
    content: Array<{ type: 'text' | 'image_url'; text?: string; image_url?: { url: string } }>;
  }>;
}

Example:

const response = await env.AI.run('@cf/meta/llama-3.2-11b-vision-instruct', {
  messages: [
    {
      role: 'user',
      content: [
        { type: 'text', text: 'What is in this image?' },
        { type: 'image_url', image_url: { url: '...' } },
      ],
    },
  ],
});

Model Selection Guide

Text Generation (LLMs)

Model Best For Rate Limit Size
@cf/meta/llama-3.1-8b-instruct General purpose, fast 300/min 8B
@cf/meta/llama-3.2-1b-instruct Ultra-fast, simple tasks 300/min 1B
@cf/qwen/qwen1.5-14b-chat-awq High quality, complex reasoning 150/min 14B
@cf/deepseek-ai/deepseek-r1-distill-qwen-32b Coding, technical content 300/min 32B
@hf/thebloke/mistral-7b-instruct-v0.1-awq Fast, efficient 400/min 7B

Text Embeddings

Model Dimensions Best For Rate Limit
@cf/baai/bge-base-en-v1.5 768 General purpose RAG 3000/min
@cf/baai/bge-large-en-v1.5 1024 High accuracy search 1500/min
@cf/baai/bge-small-en-v1.5 384 Fast, low storage 3000/min

Image Generation

Model Best For Rate Limit Speed
@cf/black-forest-labs/flux-1-schnell High quality, photorealistic 720/min Fast
@cf/stabilityai/stable-diffusion-xl-base-1.0 General purpose 720/min Medium
@cf/lykon/dreamshaper-8-lcm Artistic, stylized 720/min Fast

Vision Models

Model Best For Rate Limit
@cf/meta/llama-3.2-11b-vision-instruct Image understanding 720/min
@cf/unum/uform-gen2-qwen-500m Fast image captioning 720/min

Common Patterns

Pattern 1: Chat Completion with History

app.post('/chat', async (c) => {
  const { messages } = await c.req.json<{
    messages: Array<{ role: string; content: string }>;
  }>();

  const response = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
    messages,
    stream: true,
  });

  return new Response(response, {
    headers: { 'content-type': 'text/event-stream' },
  });
});

Pattern 2: RAG (Retrieval Augmented Generation)

// Step 1: Generate embeddings
const embeddings = await env.AI.run('@cf/baai/bge-base-en-v1.5', {
  text: [userQuery],
});

const vector = embeddings.data[0];

// Step 2: Search Vectorize
const matches = await env.VECTORIZE.query(vector, { topK: 3 });

// Step 3: Build context from matches
const context = matches.matches.map((m) => m.metadata.text).join('\n\n');

// Step 4: Generate response with context
const response = await env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
  messages: [
    {
      role: 'system',
      content: `Answer using this context:\n${context}`,
    },
    { role: 'user', content: userQuery },
  ],
  stream: true,
});

return new Response(response, {
  headers: { 'content-type': 'text/event-stream' },
});

Pattern 3: Structured Output with Zod

import { z } from 'zod';

const RecipeSchema = z.object({
  name: z.string(),
  ingredients: z.array(z.string()),
  instructions: z.array(z.string()),
  prepTime: z.number(),
});

app.post('/recipe', async (c) => {
  const { dish } = await c.req.json<{ dish: string }>();

  const response = await c.env.AI.run('@cf/meta/llama-3.1-8b-instruct', {
    messages: [
      {
        role: 'user',
        content: `Generate a recipe for ${dish}. Return ONLY valid JSON matching this schema: ${JSON.stringify(RecipeSchema.shape)}`,
      },
    ],
  });

  // Parse and validate
  const recipe = RecipeSchema.parse(JSON.parse(response.response));

  return c.json(recipe);
});

Pattern 4: Image Generation + R2 Storage

app.post('/generate-image', async (c) => {
  const { prompt } = await c.req.json<{ prompt: string }>();

  // Generate image
  const imageStream = await c.env.AI.run('@cf/black-forest-labs/flux-1-schnell', {
    prompt,
  });

  const imageBytes = await new Response(imageStream).bytes();

  // Store in R2
  const key = `images/${Date.now()}.png`;
  await c.env.BUCKET.put(key, imageBytes, {
    httpMetadata: { contentType: 'image/png' },
  });

  return c.json({
    success: true,
    url: `https://your-domain.com/${key}`,
  });
});

AI Gateway Integration

AI Gateway provides caching, logging, and analytics for AI requests.

Setup:

const response = await env.AI.run(
  '@cf/meta/llama-3.1-8b-instruct',
  { prompt: 'Hello' },
  {
    gateway: {
      id: 'my-gateway', // Your gateway ID
      skipCache: false, // Use cache
    },
  }
);

Benefits:

  • Cost Tracking - Monitor neurons usage per request
  • Caching - Reduce duplicate inference costs
  • Logging - Debug and analyze AI requests
  • Rate Limiting - Additional layer of protection
  • Analytics - Request patterns and performance

Access Gateway Logs:

const gateway = env.AI.gateway('my-gateway');
const logId = env.AI.aiGatewayLogId;

// Send feedback
await gateway.patchLog(logId, {
  feedback: { rating: 1, comment: 'Great response' },
});

Rate Limits & Pricing

Rate Limits (per minute)

Task Type Default Limit Notes
Text Generation 300/min Some fast models: 400-1500/min
Text Embeddings 3000/min BGE-large: 1500/min
Image Generation 720/min All image models
Vision Models 720/min Image understanding
Translation 720/min M2M100, Opus MT
Classification 2000/min Text classification
Speech Recognition 720/min Whisper models

Pricing (Neurons-Based)

Free Tier:

  • 10,000 neurons per day
  • Resets daily at 00:00 UTC

Paid Tier:

  • $0.011 per 1,000 neurons
  • 10,000 neurons/day included
  • Unlimited usage above free allocation

Example Costs:

Model Input (1M tokens) Output (1M tokens)
Llama 3.2 1B $0.027 $0.201
Llama 3.1 8B $0.088 $0.606
BGE-base embeddings $0.005 N/A
Flux image generation ~$0.011/image N/A

Production Checklist

Before Deploying

  • Enable AI Gateway for cost tracking and logging
  • Implement streaming for all text generation endpoints
  • Add rate limit retry with exponential backoff
  • Validate input length to prevent token limit errors
  • Set appropriate timeouts (Workers: 30s CPU default, 5m max)
  • Monitor neurons usage in Cloudflare dashboard
  • Test error handling for model unavailable, rate limits
  • Add input sanitization to prevent prompt injection
  • Configure CORS if using from browser
  • Plan for scale - upgrade to Paid plan if needed

Error Handling

async function runAIWithRetry(
  env: Env,
  model: string,
  inputs: any,
  maxRetries = 3
): Promise<any> {
  let lastError: Error;

  for (let i = 0; i < maxRetries; i++) {
    try {
      return await env.AI.run(model, inputs);
    } catch (error) {
      lastError = error as Error;
      const message = lastError.message.toLowerCase();

      // Rate limit - retry with backoff
      if (message.includes('429') || message.includes('rate limit')) {
        const delay = Math.pow(2, i) * 1000; // Exponential backoff
        await new Promise((resolve) => setTimeout(resolve, delay));
        continue;
      }

      // Other errors - throw immediately
      throw error;
    }
  }

  throw lastError!;
}

Monitoring

app.use('*', async (c, next) => {
  const start = Date.now();

  await next();

  // Log AI usage
  console.log({
    path: c.req.path,
    duration: Date.now() - start,
    logId: c.env.AI.aiGatewayLogId,
  });
});

OpenAI Compatibility

Workers AI supports OpenAI-compatible endpoints.

Using OpenAI SDK:

import OpenAI from 'openai';

const openai = new OpenAI({
  apiKey: env.CLOUDFLARE_API_KEY,
  baseURL: `https://api.cloudflare.com/client/v4/accounts/${env.CLOUDFLARE_ACCOUNT_ID}/ai/v1`,
});

// Chat completions
const completion = await openai.chat.completions.create({
  model: '@cf/meta/llama-3.1-8b-instruct',
  messages: [{ role: 'user', content: 'Hello!' }],
});

// Embeddings
const embeddings = await openai.embeddings.create({
  model: '@cf/baai/bge-base-en-v1.5',
  input: 'Hello world',
});

Endpoints:

  • /v1/chat/completions - Text generation
  • /v1/embeddings - Text embeddings

Vercel AI SDK Integration

npm install workers-ai-provider ai
import { createWorkersAI } from 'workers-ai-provider';
import { generateText, streamText } from 'ai';

const workersai = createWorkersAI({ binding: env.AI });

// Generate text
const result = await generateText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Write a poem',
});

// Stream text
const stream = streamText({
  model: workersai('@cf/meta/llama-3.1-8b-instruct'),
  prompt: 'Tell me a story',
});

Limits Summary

Feature Limit
Concurrent requests No hard limit (rate limits apply)
Max input tokens Varies by model (typically 2K-128K)
Max output tokens Varies by model (typically 512-2048)
Streaming chunk size ~1 KB
Image size (output) ~5 MB
Request timeout Workers timeout applies (30s default, 5m max CPU)
Daily free neurons 10,000
Rate limits See "Rate Limits & Pricing" section

References