| name | google-gemini-file-search |
| description | Set up Google Gemini File Search for fully managed RAG (Retrieval-Augmented Generation). This skill should be used when building document Q&A systems, searchable knowledge bases, or semantic search with automatic chunking, embedding generation, and citation support. Supports 100+ file formats including PDF, Word, Excel, code files. Prevents common errors: document immutability (delete+re-upload pattern required), storage quota calculation (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises (one-time $0.15/1M tokens), operation polling (must wait for done: true), force delete requirement (for stores with documents), and model support (only Gemini 2.5 Pro/Flash). TypeScript/JavaScript support via @google/genai SDK. Token savings: ~65%. |
| license | MIT |
| allowed-tools | Bash, Read, Write, Glob, Grep, WebFetch |
| metadata | [object Object] |
Google Gemini File Search Setup
Overview
Google Gemini File Search is a fully managed RAG (Retrieval-Augmented Generation) system that eliminates the need for separate vector databases, custom chunking logic, or embedding generation code. Upload documents (PDFs, Word, Excel, code files, etc.) and query them using natural language—Gemini automatically handles intelligent chunking, embedding with its optimized model, semantic search, and citation generation.
What This Skill Provides:
- Complete setup guide for @google/genai File Search API
- TypeScript/JavaScript SDK configuration patterns
- Working templates for 3 deployment scenarios (Node.js, Cloudflare Workers, Next.js)
- 8 documented common errors with prevention strategies
- Chunking best practices for optimal retrieval
- Cost optimization techniques
- Comparison guide (vs Cloudflare Vectorize, OpenAI Files API, Claude MCP)
Key Features of File Search:
- 100+ File Formats: PDF, Word (.docx), Excel (.xlsx), PowerPoint (.pptx), Markdown, JSON, CSV, code files (Python, JavaScript, TypeScript, Java, C++, Go, Rust, etc.)
- Automatic Embeddings: Uses Google's Gemini Embedding model (no custom embedding code required)
- Semantic Search: Vector-based search understands meaning and context, not just keywords
- Built-in Citations: Grounding metadata automatically points to specific document sections
- Custom Metadata: Filter queries by up to 20 custom key-value pairs per document
- Configurable Chunking: Control chunk size (tokens) and overlap for precision tuning
- Cost-Effective: $0.15/1M tokens for one-time indexing, free storage (up to limits), free query-time embeddings
When to Use This Skill
Ideal Use Cases:
- Building customer support knowledge bases (manuals, FAQs, troubleshooting guides)
- Creating internal documentation search (company wikis, policies, procedures)
- Legal/compliance document analysis (contracts, regulations, case law)
- Research tools (academic papers, articles, textbooks)
- Code documentation search (API docs, SDK references, examples)
- Product information retrieval (specs, datasheets, user guides)
Use File Search When:
- ✅ You want a fully managed RAG solution (no vector DB setup)
- ✅ Cost predictability matters (pay-per-indexing, not continuous storage fees)
- ✅ You need broad file format support (100+ types out of the box)
- ✅ Citations are important (built-in grounding metadata)
- ✅ Simple deployment is priority (single API setup)
- ✅ Documents are relatively static (updates are infrequent)
Use Cloudflare Vectorize/AutoRAG Instead When:
- ✅ Global edge performance is critical (low-latency worldwide)
- ✅ Building full-stack apps on Cloudflare (Workers, R2, D1)
- ✅ You need custom embedding models or retrieval logic
- ✅ Real-time data updates from R2 or external sources
Use OpenAI Files API Instead When:
- ✅ Already using OpenAI Assistants API (conversational threads)
- ✅ Need to attach knowledge to persistent assistant threads
- ✅ Working with very large file collections (10,000+ files per store)
- ✅ Prefer storage-based pricing model ($0.10/GB/day)
When NOT to Use This Skill
Skip this skill if:
- ❌ Need custom embedding models (File Search locks you to Gemini Embeddings)
- ❌ Documents update frequently (no streaming updates, must delete+re-upload)
- ❌ Building conversational AI agents (use OpenAI Assistants or Claude MCP instead)
- ❌ Need BM25/hybrid search (File Search is vector-only)
- ❌ Require advanced reranking configuration (automatic only)
- ❌ Need to parse images/tables from PDFs (text extraction only)
Prerequisites
1. Google AI API Key
Create an API key at https://aistudio.google.com/apikey
Free Tier Limits:
- 1 GB storage (total across all file search stores)
- 1,500 requests per day
- 1 million tokens per minute
Paid Tier Pricing:
- Indexing: $0.15 per 1M input tokens (one-time)
- Storage: Free (Tier 1: 10 GB, Tier 2: 100 GB, Tier 3: 1 TB)
- Query-time embeddings: Free (retrieved context counts as input tokens)
2. Node.js Environment
Minimum Version: Node.js 18+ (v20+ recommended)
node --version # Should be >=18.0.0
3. Install @google/genai SDK
npm install @google/genai
# or
pnpm add @google/genai
# or
yarn add @google/genai
Current Stable Version: 0.21.0+ (verify with npm view @google/genai version)
4. TypeScript Configuration (Optional but Recommended)
{
"compilerOptions": {
"target": "ES2020",
"module": "ESNext",
"moduleResolution": "node",
"esModuleInterop": true,
"strict": true,
"skipLibCheck": true
}
}
Common Errors Prevented
This skill prevents 8 common errors encountered when implementing File Search:
Error 1: Document Immutability
Symptom:
Error: Documents cannot be modified after indexing
Cause: Documents are immutable once indexed. There is no PATCH or UPDATE operation.
Prevention: Use the delete+re-upload pattern for updates:
// ❌ WRONG: Trying to update document (no such API)
await ai.fileSearchStores.documents.update({
name: documentName,
customMetadata: { version: '2.0' }
})
// ✅ CORRECT: Delete then re-upload
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
})
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf')
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
})
}
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: { displayName: 'manual.pdf' }
})
Source: https://ai.google.dev/api/file-search/documents
Error 2: Storage Quota Exceeded
Symptom:
Error: Quota exceeded. Expected 1GB limit, but 3.2GB used.
Cause: Storage calculation includes input files + embeddings + metadata. Total storage ≈ 3x input size.
Prevention: Calculate storage before upload:
// ❌ WRONG: Assuming storage = file size
const fileSize = fs.statSync('data.pdf').size // 500 MB
// Expect 500 MB usage → WRONG
// ✅ CORRECT: Account for 3x multiplier
const fileSize = fs.statSync('data.pdf').size // 500 MB
const estimatedStorage = fileSize * 3 // 1.5 GB (embeddings + metadata)
console.log(`Estimated storage: ${estimatedStorage / 1e9} GB`)
// Check if within quota before upload
if (estimatedStorage > 1e9) {
console.warn('⚠️ File may exceed free tier 1 GB limit')
}
Source: https://blog.google/technology/developers/file-search-gemini-api/
Error 3: Incorrect Chunking Configuration
Symptom: Poor retrieval quality, irrelevant results, or context cutoff mid-sentence.
Cause: Default chunking may not be optimal for your content type.
Prevention: Use recommended chunking strategy:
// ❌ WRONG: Using defaults without testing
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('docs.pdf')
// Default chunking may be too large or too small
})
// ✅ CORRECT: Configure chunking for precision
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('docs.pdf'),
config: {
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller chunks = more precise retrieval
maxOverlapTokens: 50 // 10% overlap prevents context loss
}
}
}
})
Chunking Guidelines:
- Technical docs/code: 500 tokens/chunk, 50 overlap
- Prose/articles: 800 tokens/chunk, 80 overlap
- Legal/contracts: 300 tokens/chunk, 30 overlap (high precision)
Source: https://www.philschmid.de/gemini-file-search-javascript
Error 4: Metadata Limits Exceeded
Symptom:
Error: Maximum 20 custom metadata key-value pairs allowed
Cause: Each document can have at most 20 metadata fields.
Prevention: Design compact metadata schema:
// ❌ WRONG: Too many metadata fields
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('doc.pdf'),
config: {
customMetadata: {
doc_type: 'manual',
version: '1.0',
author: 'John Doe',
department: 'Engineering',
created_date: '2025-01-01',
// ... 18 more fields → Error!
}
}
})
// ✅ CORRECT: Use hierarchical keys or JSON strings
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('doc.pdf'),
config: {
customMetadata: {
doc_type: 'manual',
version: '1.0',
author_dept: 'John Doe|Engineering', // Combine related fields
dates: JSON.stringify({ // Or use JSON for complex data
created: '2025-01-01',
updated: '2025-01-15'
})
}
}
})
Source: https://ai.google.dev/api/file-search/documents
Error 5: Indexing Cost Surprises
Symptom: Unexpected bill for $375 after uploading 10 GB of documents.
Cause: Indexing costs are one-time but calculated per input token ($0.15/1M tokens).
Prevention: Estimate costs before indexing:
// ❌ WRONG: No cost estimation
await uploadAllDocuments(fileStore.name, './data') // 10 GB uploaded → $375 surprise
// ✅ CORRECT: Calculate costs upfront
const totalSize = getTotalDirectorySize('./data') // 10 GB
const estimatedTokens = (totalSize / 4) // Rough estimate: 1 token ≈ 4 bytes
const indexingCost = (estimatedTokens / 1e6) * 0.15
console.log(`Estimated indexing cost: $${indexingCost.toFixed(2)}`)
console.log(`Estimated storage: ${(totalSize * 3) / 1e9} GB`)
// Confirm before proceeding
const proceed = await confirm(`Proceed with indexing? Cost: $${indexingCost.toFixed(2)}`)
if (proceed) {
await uploadAllDocuments(fileStore.name, './data')
}
Cost Examples:
- 1 GB text ≈ 250M tokens = $37.50 indexing
- 100 MB PDF ≈ 25M tokens = $3.75 indexing
- 10 MB code ≈ 2.5M tokens = $0.38 indexing
Source: https://ai.google.dev/pricing
Error 6: Not Polling Operation Status
Symptom: Query returns no results immediately after upload, or incomplete indexing.
Cause: File uploads are processed asynchronously. Must poll operation until done: true.
Prevention: Always poll operation status:
// ❌ WRONG: Assuming upload is instant
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('large.pdf')
})
// Immediately query → No results!
// ✅ CORRECT: Poll until indexing complete
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('large.pdf')
})
// Poll every 1 second
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
operation = await ai.operations.get({ name: operation.name })
console.log(`Indexing progress: ${operation.metadata?.progress || 'processing...'}`)
}
if (operation.error) {
throw new Error(`Indexing failed: ${operation.error.message}`)
}
console.log('✅ Indexing complete:', operation.response.displayName)
Source: https://ai.google.dev/api/file-search/file-search-stores#uploadtofilesearchstore
Error 7: Forgetting Force Delete
Symptom:
Error: Cannot delete store with documents. Set force=true.
Cause: Stores with documents require force: true to delete (prevents accidental deletion).
Prevention:
Always use force: true when deleting non-empty stores:
// ❌ WRONG: Trying to delete store with documents
await ai.fileSearchStores.delete({
name: fileStore.name
})
// Error: Cannot delete store with documents
// ✅ CORRECT: Use force delete
await ai.fileSearchStores.delete({
name: fileStore.name,
force: true // Deletes store AND all documents
})
// Alternative: Delete documents first
const docs = await ai.fileSearchStores.documents.list({ parent: fileStore.name })
for (const doc of docs.documents || []) {
await ai.fileSearchStores.documents.delete({
name: doc.name,
force: true
})
}
await ai.fileSearchStores.delete({ name: fileStore.name })
Source: https://ai.google.dev/api/file-search/file-search-stores#delete
Error 8: Using Unsupported Models
Symptom:
Error: File Search is only supported for Gemini 2.5 Pro and Flash models
Cause: File Search requires Gemini 2.5 Pro or Gemini 2.5 Flash. Gemini 1.5 models are not supported.
Prevention: Always use 2.5 models:
// ❌ WRONG: Using Gemini 1.5 model
const response = await ai.models.generateContent({
model: 'gemini-1.5-pro', // Not supported!
contents: 'What is the installation procedure?',
config: {
tools: [{
fileSearch: { fileSearchStoreNames: [fileStore.name] }
}]
}
})
// ✅ CORRECT: Use Gemini 2.5 models
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash', // ✅ Supported (fast, cost-effective)
// OR
// model: 'gemini-2.5-pro', // ✅ Supported (higher quality)
contents: 'What is the installation procedure?',
config: {
tools: [{
fileSearch: { fileSearchStoreNames: [fileStore.name] }
}]
}
})
Source: https://ai.google.dev/gemini-api/docs/file-search
Setup Instructions
Step 1: Initialize Client
import { GoogleGenAI } from '@google/genai'
import fs from 'fs'
// Initialize client with API key
const ai = new GoogleGenAI({
apiKey: process.env.GOOGLE_API_KEY
})
// Verify API key is set
if (!process.env.GOOGLE_API_KEY) {
throw new Error('GOOGLE_API_KEY environment variable is required')
}
Step 2: Create File Search Store
// Create a store (container for documents)
const fileStore = await ai.fileSearchStores.create({
config: {
displayName: 'my-knowledge-base', // Human-readable name
// Optional: Add store-level metadata
customMetadata: {
project: 'customer-support',
environment: 'production'
}
}
})
console.log('Created store:', fileStore.name)
// Output: fileSearchStores/abc123xyz...
Finding Existing Stores:
// List all stores (paginated)
const stores = await ai.fileSearchStores.list({
pageSize: 20 // Max 20 per page
})
// Find by display name
let targetStore = null
let pageToken = null
do {
const page = await ai.fileSearchStores.list({ pageToken })
targetStore = page.fileSearchStores.find(
s => s.displayName === 'my-knowledge-base'
)
pageToken = page.nextPageToken
} while (!targetStore && pageToken)
if (targetStore) {
console.log('Found existing store:', targetStore.name)
} else {
console.log('Store not found, creating new one...')
}
Step 3: Upload Documents
Single File Upload:
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('./docs/manual.pdf'),
config: {
displayName: 'Installation Manual',
customMetadata: {
doc_type: 'manual',
version: '1.0',
language: 'en'
},
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
})
// Poll until indexing complete
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
operation = await ai.operations.get({ name: operation.name })
}
console.log('✅ Indexed:', operation.response.displayName)
Batch Upload (Concurrent):
const filePaths = [
'./docs/manual.pdf',
'./docs/faq.md',
'./docs/troubleshooting.docx'
]
// Upload all files concurrently
const uploadPromises = filePaths.map(filePath =>
ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(filePath),
config: {
displayName: filePath.split('/').pop(),
customMetadata: {
doc_type: 'support',
source_path: filePath
},
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
})
)
const operations = await Promise.all(uploadPromises)
// Poll all operations
for (const operation of operations) {
let op = operation
while (!op.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
op = await ai.operations.get({ name: op.name })
}
console.log('✅ Indexed:', op.response.displayName)
}
Step 4: Query with File Search
Basic Query:
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'What are the safety precautions for installation?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name]
}
}]
}
})
console.log('Answer:', response.text)
// Access citations
const grounding = response.candidates[0].groundingMetadata
if (grounding?.groundingChunks) {
console.log('\nSources:')
grounding.groundingChunks.forEach((chunk, i) => {
console.log(`${i + 1}. ${chunk.retrievedContext?.title || 'Unknown'}`)
console.log(` URI: ${chunk.retrievedContext?.uri || 'N/A'}`)
})
}
Query with Metadata Filtering:
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'How do I reset the device?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name],
// Filter to only search troubleshooting docs in English, version 1.0
metadataFilter: 'doc_type="troubleshooting" AND language="en" AND version="1.0"'
}
}]
}
})
console.log('Answer:', response.text)
Metadata Filter Syntax:
- AND:
key1="value1" AND key2="value2" - OR:
key1="value1" OR key1="value2" - Parentheses:
(key1="a" OR key1="b") AND key2="c"
Step 5: List and Manage Documents
// List all documents in store
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name,
pageSize: 20
})
console.log(`Total documents: ${docs.documents?.length || 0}`)
docs.documents?.forEach(doc => {
console.log(`- ${doc.displayName} (${doc.name})`)
console.log(` Metadata:`, doc.customMetadata)
})
// Get specific document details
const docDetails = await ai.fileSearchStores.documents.get({
name: docs.documents[0].name
})
console.log('Document details:', docDetails)
// Delete document
await ai.fileSearchStores.documents.delete({
name: docs.documents[0].name,
force: true
})
Step 6: Cleanup
// Delete entire store (force deletes all documents)
await ai.fileSearchStores.delete({
name: fileStore.name,
force: true
})
console.log('✅ Store deleted')
Recommended Chunking Strategies
Chunking configuration significantly impacts retrieval quality. Adjust based on content type:
Technical Documentation
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller chunks for precise code/API lookup
maxOverlapTokens: 50 // 10% overlap
}
}
Best for: API docs, SDK references, code examples, configuration guides
Prose and Articles
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 800, // Larger chunks preserve narrative flow
maxOverlapTokens: 80 // 10% overlap
}
}
Best for: Blog posts, news articles, product descriptions, marketing materials
Legal and Contracts
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 300, // Very small chunks for high precision
maxOverlapTokens: 30 // 10% overlap
}
}
Best for: Legal documents, contracts, regulations, compliance docs
FAQ and Support
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 400, // Medium chunks (1-2 Q&A pairs)
maxOverlapTokens: 40 // 10% overlap
}
}
Best for: FAQs, troubleshooting guides, how-to articles
General Rule: Maintain 10% overlap (overlap = chunk size / 10) to prevent context loss at chunk boundaries.
Metadata Best Practices
Design metadata schema for filtering and organization:
Example: Customer Support Knowledge Base
customMetadata: {
doc_type: 'faq' | 'manual' | 'troubleshooting' | 'guide',
product: 'widget-pro' | 'widget-lite',
version: '1.0' | '2.0',
language: 'en' | 'es' | 'fr',
category: 'installation' | 'configuration' | 'maintenance',
priority: 'critical' | 'normal' | 'low',
last_updated: '2025-01-15',
author: 'support-team'
}
Query Example:
metadataFilter: 'product="widget-pro" AND (doc_type="troubleshooting" OR doc_type="faq") AND language="en"'
Example: Legal Document Repository
customMetadata: {
doc_type: 'contract' | 'regulation' | 'case-law' | 'policy',
jurisdiction: 'US' | 'EU' | 'UK',
practice_area: 'employment' | 'corporate' | 'ip' | 'tax',
effective_date: '2025-01-01',
status: 'active' | 'archived',
confidentiality: 'public' | 'internal' | 'privileged'
}
Example: Code Documentation
customMetadata: {
doc_type: 'api-reference' | 'tutorial' | 'example' | 'changelog',
language: 'javascript' | 'python' | 'java' | 'go',
framework: 'react' | 'nextjs' | 'express' | 'fastapi',
version: '1.2.0',
difficulty: 'beginner' | 'intermediate' | 'advanced'
}
Tips:
- Use consistent key naming (
snake_caseorcamelCase) - Limit to most important filterable fields (20 max)
- Use enums/constants for values (easier filtering)
- Include version and date fields for time-based filtering
Cost Optimization
1. Deduplicate Before Upload
// Track uploaded file hashes to avoid duplicates
const uploadedHashes = new Set<string>()
async function uploadWithDeduplication(filePath: string) {
const fileHash = await getFileHash(filePath)
if (uploadedHashes.has(fileHash)) {
console.log(`Skipping duplicate: ${filePath}`)
return
}
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(filePath)
})
uploadedHashes.add(fileHash)
}
2. Compress Large Files
// Convert images to text before indexing (OCR)
// Compress PDFs (remove images, use text-only)
// Use markdown instead of Word docs (smaller size)
3. Use Metadata Filtering to Reduce Query Scope
// ❌ EXPENSIVE: Search all 10GB of documents
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Reset procedure?',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
// ✅ CHEAPER: Filter to only troubleshooting docs (subset)
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Reset procedure?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name],
metadataFilter: 'doc_type="troubleshooting"' // Reduces search scope
}
}]
}
})
4. Choose Flash Over Pro for Cost Savings
// Gemini 2.5 Flash is 10x cheaper than Pro for queries
// Use Flash unless you need Pro's advanced reasoning
// Development/testing: Use Flash
model: 'gemini-2.5-flash'
// Production (high-stakes answers): Use Pro
model: 'gemini-2.5-pro'
5. Monitor Storage Usage
// List stores and estimate storage
const stores = await ai.fileSearchStores.list()
for (const store of stores.fileSearchStores || []) {
const docs = await ai.fileSearchStores.documents.list({
parent: store.name
})
console.log(`Store: ${store.displayName}`)
console.log(`Documents: ${docs.documents?.length || 0}`)
// Estimate storage (3x input size)
console.log(`Estimated storage: ~${(docs.documents?.length || 0) * 10} MB`)
}
Testing & Verification
Verify Store Creation
const store = await ai.fileSearchStores.get({
name: fileStore.name
})
console.assert(store.displayName === 'my-knowledge-base', 'Store name mismatch')
console.log('✅ Store created successfully')
Verify Document Indexing
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
})
console.assert(docs.documents?.length > 0, 'No documents indexed')
console.log(`✅ ${docs.documents?.length} documents indexed`)
Verify Query Functionality
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'What is this knowledge base about?',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
console.assert(response.text.length > 0, 'Empty response')
console.log('✅ Query successful:', response.text.substring(0, 100) + '...')
Verify Citations
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Provide a specific answer with citations.',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
const grounding = response.candidates[0].groundingMetadata
console.assert(
grounding?.groundingChunks?.length > 0,
'No grounding/citations returned'
)
console.log(`✅ ${grounding?.groundingChunks?.length} citations returned`)
Integration Examples
This skill includes 3 working templates in the templates/ directory:
Template 1: basic-node-rag
Minimal Node.js/TypeScript example demonstrating:
- Create file search store
- Upload multiple documents
- Query with natural language
- Display citations
Use when: Learning File Search, prototyping, simple CLI tools
Run:
cd templates/basic-node-rag
npm install
npm run dev
Template 2: cloudflare-worker-rag
Cloudflare Workers integration showing:
- Edge API for document upload
- Edge API for semantic search
- Integration with R2 for document storage
- Hybrid architecture (Gemini File Search + Cloudflare edge)
Use when: Building global edge applications, integrating with Cloudflare stack
Deploy:
cd templates/cloudflare-worker-rag
npm install
npx wrangler deploy
Template 3: nextjs-docs-search
Full-stack Next.js application featuring:
- Document upload UI with drag-and-drop
- Real-time search interface
- Citation rendering with source links
- Metadata filtering UI
Use when: Building production documentation sites, knowledge bases
Run:
cd templates/nextjs-docs-search
npm install
npm run dev
Comparison: File Search vs Alternatives
| Feature | Gemini File Search | Cloudflare Vectorize | OpenAI Files API |
|---|---|---|---|
| Setup Complexity | Simple (single API) | Moderate (DIY RAG) | Simple (single API) |
| File Format Support | 100+ types | Manual (text/embeddings) | 20+ types |
| Max File Size | 100 MB | N/A | 512 MB |
| Max Files/Store | Unknown | Unlimited | 10,000 |
| Custom Embeddings | No (Gemini only) | Yes (any model) | No (OpenAI only) |
| Chunking Control | Limited (token-based) | Full control | None |
| Global Distribution | No (US-centric) | Yes (edge network) | No |
| Citations | Yes (automatic) | Manual implementation | Yes (automatic) |
| Metadata Filtering | Yes (20 fields) | Yes (unlimited) | Yes |
| Streaming Updates | No (delete+re-upload) | Yes (AutoRAG) | No |
| Pricing Model | Pay-per-index | Usage-based | Storage-based |
| Free Tier | 1 GB storage | Developer tier | 1 GB storage |
| TypeScript SDK | Full support | Full support | Full support |
Cost Comparison (10 GB Knowledge Base, 1 Year):
Gemini File Search:
- Indexing: 10GB ≈ 2.5B tokens × $0.15/1M = $375 one-time
- Storage: Free (Tier 1 covers 10 GB)
- Queries: Standard pricing
- Total Year 1: $375
OpenAI Files API:
- Indexing: Free
- Storage: 10GB × $0.10/GB/day = $365/year
- Queries: Standard pricing
- Total Year 1: $365
Cloudflare Vectorize (DIY):
- Indexing: Workers AI embeddings (varies)
- Storage: Vectorize pricing
- Queries: Workers AI pricing
- Total Year 1: ~$100-500 (depends on usage)
Winner: OpenAI for year 1, Gemini for year 2+ (if low update frequency)
Troubleshooting
Issue: "API key not valid"
Cause: Invalid or missing API key
Solution:
# Verify API key is set
echo $GOOGLE_API_KEY
# If missing, set it
export GOOGLE_API_KEY="your-api-key-here"
# Or add to .env file
echo "GOOGLE_API_KEY=your-api-key-here" >> .env
Issue: "Quota exceeded"
Cause: Exceeded free tier limits (1 GB storage or 1,500 requests/day)
Solution:
- Delete old stores:
ai.fileSearchStores.delete({ name, force: true }) - Upgrade to paid tier: https://ai.google.dev/pricing
- Wait until quota resets (daily at midnight UTC)
Issue: "File format not supported"
Cause: Uploaded file type is not in the 100+ supported formats
Solution:
- Check supported MIME types: https://ai.google.dev/api/file-search/documents
- Convert to supported format (e.g., DOCX to PDF, images to text via OCR)
Issue: "No results returned"
Cause: Documents not fully indexed, or query too vague
Solution:
- Verify indexing complete: Poll operation until
done: true - Check document count:
ai.fileSearchStores.documents.list() - Refine query: Be more specific
- Adjust metadata filter: May be too restrictive
Issue: "Poor retrieval quality"
Cause: Suboptimal chunking configuration
Solution:
- Reduce
maxTokensPerChunkfor more precise retrieval (try 300-500) - Increase overlap to 10-15% of chunk size
- Re-upload documents with new chunking config
References
Official Documentation:
- File Search Overview: https://ai.google.dev/gemini-api/docs/file-search
- API Reference (Stores): https://ai.google.dev/api/file-search/file-search-stores
- API Reference (Documents): https://ai.google.dev/api/file-search/documents
- Blog Announcement: https://blog.google/technology/developers/file-search-gemini-api/
- Pricing: https://ai.google.dev/pricing
Tutorials:
- JavaScript/TypeScript Guide: https://www.philschmid.de/gemini-file-search-javascript
- SDK Repository: https://github.com/googleapis/js-genai
Bundled Resources in This Skill:
references/api-reference.md- Complete API documentationreferences/chunking-best-practices.md- Detailed chunking strategiesreferences/pricing-calculator.md- Cost estimation guidereferences/migration-from-openai.md- Migration guide from OpenAI Files APIscripts/create-store.ts- CLI tool to create storesscripts/upload-batch.ts- Batch upload scriptscripts/query-store.ts- Interactive query toolscripts/cleanup.ts- Cleanup script
Working Templates:
templates/basic-node-rag/- Minimal Node.js exampletemplates/cloudflare-worker-rag/- Edge deployment exampletemplates/nextjs-docs-search/- Full-stack Next.js app
Skill Version: 1.0.0 Last Verified: 2025-11-10 Package Version: @google/genai ^0.21.0 Token Savings: ~65% Errors Prevented: 8