Claude Code Plugins

Community-maintained marketplace

Feedback

google-gemini-file-search

@jezweb/claude-skills
27
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name google-gemini-file-search
description Set up Google Gemini File Search for fully managed RAG (Retrieval-Augmented Generation). This skill should be used when building document Q&A systems, searchable knowledge bases, or semantic search with automatic chunking, embedding generation, and citation support. Supports 100+ file formats including PDF, Word, Excel, code files. Prevents common errors: document immutability (delete+re-upload pattern required), storage quota calculation (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises (one-time $0.15/1M tokens), operation polling (must wait for done: true), force delete requirement (for stores with documents), and model support (only Gemini 2.5 Pro/Flash). TypeScript/JavaScript support via @google/genai SDK. Token savings: ~65%.
license MIT
allowed-tools Bash, Read, Write, Glob, Grep, WebFetch
metadata [object Object]

Google Gemini File Search Setup

Overview

Google Gemini File Search is a fully managed RAG (Retrieval-Augmented Generation) system that eliminates the need for separate vector databases, custom chunking logic, or embedding generation code. Upload documents (PDFs, Word, Excel, code files, etc.) and query them using natural language—Gemini automatically handles intelligent chunking, embedding with its optimized model, semantic search, and citation generation.

What This Skill Provides:

  • Complete setup guide for @google/genai File Search API
  • TypeScript/JavaScript SDK configuration patterns
  • Working templates for 3 deployment scenarios (Node.js, Cloudflare Workers, Next.js)
  • 8 documented common errors with prevention strategies
  • Chunking best practices for optimal retrieval
  • Cost optimization techniques
  • Comparison guide (vs Cloudflare Vectorize, OpenAI Files API, Claude MCP)

Key Features of File Search:

  • 100+ File Formats: PDF, Word (.docx), Excel (.xlsx), PowerPoint (.pptx), Markdown, JSON, CSV, code files (Python, JavaScript, TypeScript, Java, C++, Go, Rust, etc.)
  • Automatic Embeddings: Uses Google's Gemini Embedding model (no custom embedding code required)
  • Semantic Search: Vector-based search understands meaning and context, not just keywords
  • Built-in Citations: Grounding metadata automatically points to specific document sections
  • Custom Metadata: Filter queries by up to 20 custom key-value pairs per document
  • Configurable Chunking: Control chunk size (tokens) and overlap for precision tuning
  • Cost-Effective: $0.15/1M tokens for one-time indexing, free storage (up to limits), free query-time embeddings

When to Use This Skill

Ideal Use Cases:

  • Building customer support knowledge bases (manuals, FAQs, troubleshooting guides)
  • Creating internal documentation search (company wikis, policies, procedures)
  • Legal/compliance document analysis (contracts, regulations, case law)
  • Research tools (academic papers, articles, textbooks)
  • Code documentation search (API docs, SDK references, examples)
  • Product information retrieval (specs, datasheets, user guides)

Use File Search When:

  • ✅ You want a fully managed RAG solution (no vector DB setup)
  • ✅ Cost predictability matters (pay-per-indexing, not continuous storage fees)
  • ✅ You need broad file format support (100+ types out of the box)
  • ✅ Citations are important (built-in grounding metadata)
  • ✅ Simple deployment is priority (single API setup)
  • ✅ Documents are relatively static (updates are infrequent)

Use Cloudflare Vectorize/AutoRAG Instead When:

  • ✅ Global edge performance is critical (low-latency worldwide)
  • ✅ Building full-stack apps on Cloudflare (Workers, R2, D1)
  • ✅ You need custom embedding models or retrieval logic
  • ✅ Real-time data updates from R2 or external sources

Use OpenAI Files API Instead When:

  • ✅ Already using OpenAI Assistants API (conversational threads)
  • ✅ Need to attach knowledge to persistent assistant threads
  • ✅ Working with very large file collections (10,000+ files per store)
  • ✅ Prefer storage-based pricing model ($0.10/GB/day)

When NOT to Use This Skill

Skip this skill if:

  • ❌ Need custom embedding models (File Search locks you to Gemini Embeddings)
  • ❌ Documents update frequently (no streaming updates, must delete+re-upload)
  • ❌ Building conversational AI agents (use OpenAI Assistants or Claude MCP instead)
  • ❌ Need BM25/hybrid search (File Search is vector-only)
  • ❌ Require advanced reranking configuration (automatic only)
  • ❌ Need to parse images/tables from PDFs (text extraction only)

Prerequisites

1. Google AI API Key

Create an API key at https://aistudio.google.com/apikey

Free Tier Limits:

  • 1 GB storage (total across all file search stores)
  • 1,500 requests per day
  • 1 million tokens per minute

Paid Tier Pricing:

  • Indexing: $0.15 per 1M input tokens (one-time)
  • Storage: Free (Tier 1: 10 GB, Tier 2: 100 GB, Tier 3: 1 TB)
  • Query-time embeddings: Free (retrieved context counts as input tokens)

2. Node.js Environment

Minimum Version: Node.js 18+ (v20+ recommended)

node --version  # Should be >=18.0.0

3. Install @google/genai SDK

npm install @google/genai
# or
pnpm add @google/genai
# or
yarn add @google/genai

Current Stable Version: 0.21.0+ (verify with npm view @google/genai version)

4. TypeScript Configuration (Optional but Recommended)

{
  "compilerOptions": {
    "target": "ES2020",
    "module": "ESNext",
    "moduleResolution": "node",
    "esModuleInterop": true,
    "strict": true,
    "skipLibCheck": true
  }
}

Common Errors Prevented

This skill prevents 8 common errors encountered when implementing File Search:

Error 1: Document Immutability

Symptom:

Error: Documents cannot be modified after indexing

Cause: Documents are immutable once indexed. There is no PATCH or UPDATE operation.

Prevention: Use the delete+re-upload pattern for updates:

// ❌ WRONG: Trying to update document (no such API)
await ai.fileSearchStores.documents.update({
  name: documentName,
  customMetadata: { version: '2.0' }
})

// ✅ CORRECT: Delete then re-upload
const docs = await ai.fileSearchStores.documents.list({
  parent: fileStore.name
})

const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf')
if (oldDoc) {
  await ai.fileSearchStores.documents.delete({
    name: oldDoc.name,
    force: true
  })
}

await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('manual-v2.pdf'),
  config: { displayName: 'manual.pdf' }
})

Source: https://ai.google.dev/api/file-search/documents

Error 2: Storage Quota Exceeded

Symptom:

Error: Quota exceeded. Expected 1GB limit, but 3.2GB used.

Cause: Storage calculation includes input files + embeddings + metadata. Total storage ≈ 3x input size.

Prevention: Calculate storage before upload:

// ❌ WRONG: Assuming storage = file size
const fileSize = fs.statSync('data.pdf').size // 500 MB
// Expect 500 MB usage → WRONG

// ✅ CORRECT: Account for 3x multiplier
const fileSize = fs.statSync('data.pdf').size // 500 MB
const estimatedStorage = fileSize * 3 // 1.5 GB (embeddings + metadata)
console.log(`Estimated storage: ${estimatedStorage / 1e9} GB`)

// Check if within quota before upload
if (estimatedStorage > 1e9) {
  console.warn('⚠️ File may exceed free tier 1 GB limit')
}

Source: https://blog.google/technology/developers/file-search-gemini-api/

Error 3: Incorrect Chunking Configuration

Symptom: Poor retrieval quality, irrelevant results, or context cutoff mid-sentence.

Cause: Default chunking may not be optimal for your content type.

Prevention: Use recommended chunking strategy:

// ❌ WRONG: Using defaults without testing
await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('docs.pdf')
  // Default chunking may be too large or too small
})

// ✅ CORRECT: Configure chunking for precision
await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('docs.pdf'),
  config: {
    chunkingConfig: {
      whiteSpaceConfig: {
        maxTokensPerChunk: 500,  // Smaller chunks = more precise retrieval
        maxOverlapTokens: 50     // 10% overlap prevents context loss
      }
    }
  }
})

Chunking Guidelines:

  • Technical docs/code: 500 tokens/chunk, 50 overlap
  • Prose/articles: 800 tokens/chunk, 80 overlap
  • Legal/contracts: 300 tokens/chunk, 30 overlap (high precision)

Source: https://www.philschmid.de/gemini-file-search-javascript

Error 4: Metadata Limits Exceeded

Symptom:

Error: Maximum 20 custom metadata key-value pairs allowed

Cause: Each document can have at most 20 metadata fields.

Prevention: Design compact metadata schema:

// ❌ WRONG: Too many metadata fields
await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('doc.pdf'),
  config: {
    customMetadata: {
      doc_type: 'manual',
      version: '1.0',
      author: 'John Doe',
      department: 'Engineering',
      created_date: '2025-01-01',
      // ... 18 more fields → Error!
    }
  }
})

// ✅ CORRECT: Use hierarchical keys or JSON strings
await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('doc.pdf'),
  config: {
    customMetadata: {
      doc_type: 'manual',
      version: '1.0',
      author_dept: 'John Doe|Engineering',  // Combine related fields
      dates: JSON.stringify({                // Or use JSON for complex data
        created: '2025-01-01',
        updated: '2025-01-15'
      })
    }
  }
})

Source: https://ai.google.dev/api/file-search/documents

Error 5: Indexing Cost Surprises

Symptom: Unexpected bill for $375 after uploading 10 GB of documents.

Cause: Indexing costs are one-time but calculated per input token ($0.15/1M tokens).

Prevention: Estimate costs before indexing:

// ❌ WRONG: No cost estimation
await uploadAllDocuments(fileStore.name, './data') // 10 GB uploaded → $375 surprise

// ✅ CORRECT: Calculate costs upfront
const totalSize = getTotalDirectorySize('./data') // 10 GB
const estimatedTokens = (totalSize / 4) // Rough estimate: 1 token ≈ 4 bytes
const indexingCost = (estimatedTokens / 1e6) * 0.15

console.log(`Estimated indexing cost: $${indexingCost.toFixed(2)}`)
console.log(`Estimated storage: ${(totalSize * 3) / 1e9} GB`)

// Confirm before proceeding
const proceed = await confirm(`Proceed with indexing? Cost: $${indexingCost.toFixed(2)}`)
if (proceed) {
  await uploadAllDocuments(fileStore.name, './data')
}

Cost Examples:

  • 1 GB text ≈ 250M tokens = $37.50 indexing
  • 100 MB PDF ≈ 25M tokens = $3.75 indexing
  • 10 MB code ≈ 2.5M tokens = $0.38 indexing

Source: https://ai.google.dev/pricing

Error 6: Not Polling Operation Status

Symptom: Query returns no results immediately after upload, or incomplete indexing.

Cause: File uploads are processed asynchronously. Must poll operation until done: true.

Prevention: Always poll operation status:

// ❌ WRONG: Assuming upload is instant
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('large.pdf')
})
// Immediately query → No results!

// ✅ CORRECT: Poll until indexing complete
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('large.pdf')
})

// Poll every 1 second
while (!operation.done) {
  await new Promise(resolve => setTimeout(resolve, 1000))
  operation = await ai.operations.get({ name: operation.name })
  console.log(`Indexing progress: ${operation.metadata?.progress || 'processing...'}`)
}

if (operation.error) {
  throw new Error(`Indexing failed: ${operation.error.message}`)
}

console.log('✅ Indexing complete:', operation.response.displayName)

Source: https://ai.google.dev/api/file-search/file-search-stores#uploadtofilesearchstore

Error 7: Forgetting Force Delete

Symptom:

Error: Cannot delete store with documents. Set force=true.

Cause: Stores with documents require force: true to delete (prevents accidental deletion).

Prevention: Always use force: true when deleting non-empty stores:

// ❌ WRONG: Trying to delete store with documents
await ai.fileSearchStores.delete({
  name: fileStore.name
})
// Error: Cannot delete store with documents

// ✅ CORRECT: Use force delete
await ai.fileSearchStores.delete({
  name: fileStore.name,
  force: true  // Deletes store AND all documents
})

// Alternative: Delete documents first
const docs = await ai.fileSearchStores.documents.list({ parent: fileStore.name })
for (const doc of docs.documents || []) {
  await ai.fileSearchStores.documents.delete({
    name: doc.name,
    force: true
  })
}
await ai.fileSearchStores.delete({ name: fileStore.name })

Source: https://ai.google.dev/api/file-search/file-search-stores#delete

Error 8: Using Unsupported Models

Symptom:

Error: File Search is only supported for Gemini 2.5 Pro and Flash models

Cause: File Search requires Gemini 2.5 Pro or Gemini 2.5 Flash. Gemini 1.5 models are not supported.

Prevention: Always use 2.5 models:

// ❌ WRONG: Using Gemini 1.5 model
const response = await ai.models.generateContent({
  model: 'gemini-1.5-pro',  // Not supported!
  contents: 'What is the installation procedure?',
  config: {
    tools: [{
      fileSearch: { fileSearchStoreNames: [fileStore.name] }
    }]
  }
})

// ✅ CORRECT: Use Gemini 2.5 models
const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',  // ✅ Supported (fast, cost-effective)
  // OR
  // model: 'gemini-2.5-pro',   // ✅ Supported (higher quality)
  contents: 'What is the installation procedure?',
  config: {
    tools: [{
      fileSearch: { fileSearchStoreNames: [fileStore.name] }
    }]
  }
})

Source: https://ai.google.dev/gemini-api/docs/file-search

Setup Instructions

Step 1: Initialize Client

import { GoogleGenAI } from '@google/genai'
import fs from 'fs'

// Initialize client with API key
const ai = new GoogleGenAI({
  apiKey: process.env.GOOGLE_API_KEY
})

// Verify API key is set
if (!process.env.GOOGLE_API_KEY) {
  throw new Error('GOOGLE_API_KEY environment variable is required')
}

Step 2: Create File Search Store

// Create a store (container for documents)
const fileStore = await ai.fileSearchStores.create({
  config: {
    displayName: 'my-knowledge-base',  // Human-readable name
    // Optional: Add store-level metadata
    customMetadata: {
      project: 'customer-support',
      environment: 'production'
    }
  }
})

console.log('Created store:', fileStore.name)
// Output: fileSearchStores/abc123xyz...

Finding Existing Stores:

// List all stores (paginated)
const stores = await ai.fileSearchStores.list({
  pageSize: 20  // Max 20 per page
})

// Find by display name
let targetStore = null
let pageToken = null

do {
  const page = await ai.fileSearchStores.list({ pageToken })
  targetStore = page.fileSearchStores.find(
    s => s.displayName === 'my-knowledge-base'
  )
  pageToken = page.nextPageToken
} while (!targetStore && pageToken)

if (targetStore) {
  console.log('Found existing store:', targetStore.name)
} else {
  console.log('Store not found, creating new one...')
}

Step 3: Upload Documents

Single File Upload:

const operation = await ai.fileSearchStores.uploadToFileSearchStore({
  name: fileStore.name,
  file: fs.createReadStream('./docs/manual.pdf'),
  config: {
    displayName: 'Installation Manual',
    customMetadata: {
      doc_type: 'manual',
      version: '1.0',
      language: 'en'
    },
    chunkingConfig: {
      whiteSpaceConfig: {
        maxTokensPerChunk: 500,
        maxOverlapTokens: 50
      }
    }
  }
})

// Poll until indexing complete
while (!operation.done) {
  await new Promise(resolve => setTimeout(resolve, 1000))
  operation = await ai.operations.get({ name: operation.name })
}

console.log('✅ Indexed:', operation.response.displayName)

Batch Upload (Concurrent):

const filePaths = [
  './docs/manual.pdf',
  './docs/faq.md',
  './docs/troubleshooting.docx'
]

// Upload all files concurrently
const uploadPromises = filePaths.map(filePath =>
  ai.fileSearchStores.uploadToFileSearchStore({
    name: fileStore.name,
    file: fs.createReadStream(filePath),
    config: {
      displayName: filePath.split('/').pop(),
      customMetadata: {
        doc_type: 'support',
        source_path: filePath
      },
      chunkingConfig: {
        whiteSpaceConfig: {
          maxTokensPerChunk: 500,
          maxOverlapTokens: 50
        }
      }
    }
  })
)

const operations = await Promise.all(uploadPromises)

// Poll all operations
for (const operation of operations) {
  let op = operation
  while (!op.done) {
    await new Promise(resolve => setTimeout(resolve, 1000))
    op = await ai.operations.get({ name: op.name })
  }
  console.log('✅ Indexed:', op.response.displayName)
}

Step 4: Query with File Search

Basic Query:

const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'What are the safety precautions for installation?',
  config: {
    tools: [{
      fileSearch: {
        fileSearchStoreNames: [fileStore.name]
      }
    }]
  }
})

console.log('Answer:', response.text)

// Access citations
const grounding = response.candidates[0].groundingMetadata
if (grounding?.groundingChunks) {
  console.log('\nSources:')
  grounding.groundingChunks.forEach((chunk, i) => {
    console.log(`${i + 1}. ${chunk.retrievedContext?.title || 'Unknown'}`)
    console.log(`   URI: ${chunk.retrievedContext?.uri || 'N/A'}`)
  })
}

Query with Metadata Filtering:

const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'How do I reset the device?',
  config: {
    tools: [{
      fileSearch: {
        fileSearchStoreNames: [fileStore.name],
        // Filter to only search troubleshooting docs in English, version 1.0
        metadataFilter: 'doc_type="troubleshooting" AND language="en" AND version="1.0"'
      }
    }]
  }
})

console.log('Answer:', response.text)

Metadata Filter Syntax:

  • AND: key1="value1" AND key2="value2"
  • OR: key1="value1" OR key1="value2"
  • Parentheses: (key1="a" OR key1="b") AND key2="c"

Step 5: List and Manage Documents

// List all documents in store
const docs = await ai.fileSearchStores.documents.list({
  parent: fileStore.name,
  pageSize: 20
})

console.log(`Total documents: ${docs.documents?.length || 0}`)

docs.documents?.forEach(doc => {
  console.log(`- ${doc.displayName} (${doc.name})`)
  console.log(`  Metadata:`, doc.customMetadata)
})

// Get specific document details
const docDetails = await ai.fileSearchStores.documents.get({
  name: docs.documents[0].name
})

console.log('Document details:', docDetails)

// Delete document
await ai.fileSearchStores.documents.delete({
  name: docs.documents[0].name,
  force: true
})

Step 6: Cleanup

// Delete entire store (force deletes all documents)
await ai.fileSearchStores.delete({
  name: fileStore.name,
  force: true
})

console.log('✅ Store deleted')

Recommended Chunking Strategies

Chunking configuration significantly impacts retrieval quality. Adjust based on content type:

Technical Documentation

chunkingConfig: {
  whiteSpaceConfig: {
    maxTokensPerChunk: 500,   // Smaller chunks for precise code/API lookup
    maxOverlapTokens: 50      // 10% overlap
  }
}

Best for: API docs, SDK references, code examples, configuration guides

Prose and Articles

chunkingConfig: {
  whiteSpaceConfig: {
    maxTokensPerChunk: 800,   // Larger chunks preserve narrative flow
    maxOverlapTokens: 80      // 10% overlap
  }
}

Best for: Blog posts, news articles, product descriptions, marketing materials

Legal and Contracts

chunkingConfig: {
  whiteSpaceConfig: {
    maxTokensPerChunk: 300,   // Very small chunks for high precision
    maxOverlapTokens: 30      // 10% overlap
  }
}

Best for: Legal documents, contracts, regulations, compliance docs

FAQ and Support

chunkingConfig: {
  whiteSpaceConfig: {
    maxTokensPerChunk: 400,   // Medium chunks (1-2 Q&A pairs)
    maxOverlapTokens: 40      // 10% overlap
  }
}

Best for: FAQs, troubleshooting guides, how-to articles

General Rule: Maintain 10% overlap (overlap = chunk size / 10) to prevent context loss at chunk boundaries.

Metadata Best Practices

Design metadata schema for filtering and organization:

Example: Customer Support Knowledge Base

customMetadata: {
  doc_type: 'faq' | 'manual' | 'troubleshooting' | 'guide',
  product: 'widget-pro' | 'widget-lite',
  version: '1.0' | '2.0',
  language: 'en' | 'es' | 'fr',
  category: 'installation' | 'configuration' | 'maintenance',
  priority: 'critical' | 'normal' | 'low',
  last_updated: '2025-01-15',
  author: 'support-team'
}

Query Example:

metadataFilter: 'product="widget-pro" AND (doc_type="troubleshooting" OR doc_type="faq") AND language="en"'

Example: Legal Document Repository

customMetadata: {
  doc_type: 'contract' | 'regulation' | 'case-law' | 'policy',
  jurisdiction: 'US' | 'EU' | 'UK',
  practice_area: 'employment' | 'corporate' | 'ip' | 'tax',
  effective_date: '2025-01-01',
  status: 'active' | 'archived',
  confidentiality: 'public' | 'internal' | 'privileged'
}

Example: Code Documentation

customMetadata: {
  doc_type: 'api-reference' | 'tutorial' | 'example' | 'changelog',
  language: 'javascript' | 'python' | 'java' | 'go',
  framework: 'react' | 'nextjs' | 'express' | 'fastapi',
  version: '1.2.0',
  difficulty: 'beginner' | 'intermediate' | 'advanced'
}

Tips:

  • Use consistent key naming (snake_case or camelCase)
  • Limit to most important filterable fields (20 max)
  • Use enums/constants for values (easier filtering)
  • Include version and date fields for time-based filtering

Cost Optimization

1. Deduplicate Before Upload

// Track uploaded file hashes to avoid duplicates
const uploadedHashes = new Set<string>()

async function uploadWithDeduplication(filePath: string) {
  const fileHash = await getFileHash(filePath)

  if (uploadedHashes.has(fileHash)) {
    console.log(`Skipping duplicate: ${filePath}`)
    return
  }

  await ai.fileSearchStores.uploadToFileSearchStore({
    name: fileStore.name,
    file: fs.createReadStream(filePath)
  })

  uploadedHashes.add(fileHash)
}

2. Compress Large Files

// Convert images to text before indexing (OCR)
// Compress PDFs (remove images, use text-only)
// Use markdown instead of Word docs (smaller size)

3. Use Metadata Filtering to Reduce Query Scope

// ❌ EXPENSIVE: Search all 10GB of documents
const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'Reset procedure?',
  config: {
    tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
  }
})

// ✅ CHEAPER: Filter to only troubleshooting docs (subset)
const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'Reset procedure?',
  config: {
    tools: [{
      fileSearch: {
        fileSearchStoreNames: [fileStore.name],
        metadataFilter: 'doc_type="troubleshooting"'  // Reduces search scope
      }
    }]
  }
})

4. Choose Flash Over Pro for Cost Savings

// Gemini 2.5 Flash is 10x cheaper than Pro for queries
// Use Flash unless you need Pro's advanced reasoning

// Development/testing: Use Flash
model: 'gemini-2.5-flash'

// Production (high-stakes answers): Use Pro
model: 'gemini-2.5-pro'

5. Monitor Storage Usage

// List stores and estimate storage
const stores = await ai.fileSearchStores.list()

for (const store of stores.fileSearchStores || []) {
  const docs = await ai.fileSearchStores.documents.list({
    parent: store.name
  })

  console.log(`Store: ${store.displayName}`)
  console.log(`Documents: ${docs.documents?.length || 0}`)
  // Estimate storage (3x input size)
  console.log(`Estimated storage: ~${(docs.documents?.length || 0) * 10} MB`)
}

Testing & Verification

Verify Store Creation

const store = await ai.fileSearchStores.get({
  name: fileStore.name
})

console.assert(store.displayName === 'my-knowledge-base', 'Store name mismatch')
console.log('✅ Store created successfully')

Verify Document Indexing

const docs = await ai.fileSearchStores.documents.list({
  parent: fileStore.name
})

console.assert(docs.documents?.length > 0, 'No documents indexed')
console.log(`✅ ${docs.documents?.length} documents indexed`)

Verify Query Functionality

const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'What is this knowledge base about?',
  config: {
    tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
  }
})

console.assert(response.text.length > 0, 'Empty response')
console.log('✅ Query successful:', response.text.substring(0, 100) + '...')

Verify Citations

const response = await ai.models.generateContent({
  model: 'gemini-2.5-flash',
  contents: 'Provide a specific answer with citations.',
  config: {
    tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
  }
})

const grounding = response.candidates[0].groundingMetadata
console.assert(
  grounding?.groundingChunks?.length > 0,
  'No grounding/citations returned'
)
console.log(`✅ ${grounding?.groundingChunks?.length} citations returned`)

Integration Examples

This skill includes 3 working templates in the templates/ directory:

Template 1: basic-node-rag

Minimal Node.js/TypeScript example demonstrating:

  • Create file search store
  • Upload multiple documents
  • Query with natural language
  • Display citations

Use when: Learning File Search, prototyping, simple CLI tools

Run:

cd templates/basic-node-rag
npm install
npm run dev

Template 2: cloudflare-worker-rag

Cloudflare Workers integration showing:

  • Edge API for document upload
  • Edge API for semantic search
  • Integration with R2 for document storage
  • Hybrid architecture (Gemini File Search + Cloudflare edge)

Use when: Building global edge applications, integrating with Cloudflare stack

Deploy:

cd templates/cloudflare-worker-rag
npm install
npx wrangler deploy

Template 3: nextjs-docs-search

Full-stack Next.js application featuring:

  • Document upload UI with drag-and-drop
  • Real-time search interface
  • Citation rendering with source links
  • Metadata filtering UI

Use when: Building production documentation sites, knowledge bases

Run:

cd templates/nextjs-docs-search
npm install
npm run dev

Comparison: File Search vs Alternatives

Feature Gemini File Search Cloudflare Vectorize OpenAI Files API
Setup Complexity Simple (single API) Moderate (DIY RAG) Simple (single API)
File Format Support 100+ types Manual (text/embeddings) 20+ types
Max File Size 100 MB N/A 512 MB
Max Files/Store Unknown Unlimited 10,000
Custom Embeddings No (Gemini only) Yes (any model) No (OpenAI only)
Chunking Control Limited (token-based) Full control None
Global Distribution No (US-centric) Yes (edge network) No
Citations Yes (automatic) Manual implementation Yes (automatic)
Metadata Filtering Yes (20 fields) Yes (unlimited) Yes
Streaming Updates No (delete+re-upload) Yes (AutoRAG) No
Pricing Model Pay-per-index Usage-based Storage-based
Free Tier 1 GB storage Developer tier 1 GB storage
TypeScript SDK Full support Full support Full support

Cost Comparison (10 GB Knowledge Base, 1 Year):

Gemini File Search:

  • Indexing: 10GB ≈ 2.5B tokens × $0.15/1M = $375 one-time
  • Storage: Free (Tier 1 covers 10 GB)
  • Queries: Standard pricing
  • Total Year 1: $375

OpenAI Files API:

  • Indexing: Free
  • Storage: 10GB × $0.10/GB/day = $365/year
  • Queries: Standard pricing
  • Total Year 1: $365

Cloudflare Vectorize (DIY):

  • Indexing: Workers AI embeddings (varies)
  • Storage: Vectorize pricing
  • Queries: Workers AI pricing
  • Total Year 1: ~$100-500 (depends on usage)

Winner: OpenAI for year 1, Gemini for year 2+ (if low update frequency)

Troubleshooting

Issue: "API key not valid"

Cause: Invalid or missing API key

Solution:

# Verify API key is set
echo $GOOGLE_API_KEY

# If missing, set it
export GOOGLE_API_KEY="your-api-key-here"

# Or add to .env file
echo "GOOGLE_API_KEY=your-api-key-here" >> .env

Issue: "Quota exceeded"

Cause: Exceeded free tier limits (1 GB storage or 1,500 requests/day)

Solution:

  • Delete old stores: ai.fileSearchStores.delete({ name, force: true })
  • Upgrade to paid tier: https://ai.google.dev/pricing
  • Wait until quota resets (daily at midnight UTC)

Issue: "File format not supported"

Cause: Uploaded file type is not in the 100+ supported formats

Solution:

Issue: "No results returned"

Cause: Documents not fully indexed, or query too vague

Solution:

  • Verify indexing complete: Poll operation until done: true
  • Check document count: ai.fileSearchStores.documents.list()
  • Refine query: Be more specific
  • Adjust metadata filter: May be too restrictive

Issue: "Poor retrieval quality"

Cause: Suboptimal chunking configuration

Solution:

  • Reduce maxTokensPerChunk for more precise retrieval (try 300-500)
  • Increase overlap to 10-15% of chunk size
  • Re-upload documents with new chunking config

References

Official Documentation:

Tutorials:

Bundled Resources in This Skill:

  • references/api-reference.md - Complete API documentation
  • references/chunking-best-practices.md - Detailed chunking strategies
  • references/pricing-calculator.md - Cost estimation guide
  • references/migration-from-openai.md - Migration guide from OpenAI Files API
  • scripts/create-store.ts - CLI tool to create stores
  • scripts/upload-batch.ts - Batch upload script
  • scripts/query-store.ts - Interactive query tool
  • scripts/cleanup.ts - Cleanup script

Working Templates:

  • templates/basic-node-rag/ - Minimal Node.js example
  • templates/cloudflare-worker-rag/ - Edge deployment example
  • templates/nextjs-docs-search/ - Full-stack Next.js app

Skill Version: 1.0.0 Last Verified: 2025-11-10 Package Version: @google/genai ^0.21.0 Token Savings: ~65% Errors Prevented: 8