| name | openai-assistants |
| description | Complete guide for OpenAI's Assistants API v2: stateful conversational AI with built-in tools (Code Interpreter, File Search, Function Calling), vector stores for RAG (up to 10,000 files), thread/run lifecycle management, and streaming patterns. Both Node.js SDK and fetch approaches. ⚠️ DEPRECATION NOTICE: OpenAI plans to sunset Assistants API in H1 2026 in favor of Responses API. This skill remains valuable for existing apps and migration planning. Use when: building stateful chatbots with OpenAI, implementing RAG with vector stores, executing Python code with Code Interpreter, using file search for document Q&A, managing conversation threads, streaming assistant responses, or encountering errors like "thread already has active run", vector store indexing delays, run polling timeouts, or file upload issues. Keywords: openai assistants, assistants api, openai threads, openai runs, code interpreter assistant, file search openai, vector store openai, openai rag, assistant streaming, thread persistence, stateful chatbot, thread already has active run, run status polling, vector store error |
| license | MIT |
OpenAI Assistants API v2
Status: Production Ready (Deprecated H1 2026) Package: openai@6.7.0 Last Updated: 2025-10-25 v1 Deprecated: December 18, 2024 v2 Sunset: H1 2026 (migrate to Responses API)
⚠️ Important: Deprecation Notice
OpenAI announced that the Assistants API will be deprecated in favor of the Responses API.
Timeline:
- ✅ Dec 18, 2024: Assistants API v1 deprecated
- ⏳ H1 2026: Planned sunset of Assistants API v2
- ✅ Now: Responses API available (recommended for new projects)
Should you still use this skill?
- ✅ Yes, if: You have existing Assistants API code (12-18 month migration window)
- ✅ Yes, if: You need to maintain legacy applications
- ✅ Yes, if: Planning migration from Assistants → Responses
- ❌ No, if: Starting a new project (use openai-responses skill instead)
Migration Path:
See references/migration-to-responses.md for complete migration guide.
Table of Contents
- Quick Start
- Core Concepts
- Assistants
- Threads
- Messages
- Runs
- Streaming Runs
- Tools
- Vector Stores
- File Uploads
- Thread Lifecycle Management
- Error Handling
- Production Best Practices
- Relationship to Other Skills
Quick Start
Installation
npm install openai@6.7.0
Environment Setup
export OPENAI_API_KEY="sk-..."
Basic Assistant (Node.js SDK)
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
// 1. Create an assistant
const assistant = await openai.beta.assistants.create({
name: "Math Tutor",
instructions: "You are a personal math tutor. Write and run code to answer math questions.",
tools: [{ type: "code_interpreter" }],
model: "gpt-4o",
});
// 2. Create a thread
const thread = await openai.beta.threads.create();
// 3. Add a message to the thread
await openai.beta.threads.messages.create(thread.id, {
role: "user",
content: "I need to solve the equation `3x + 11 = 14`. Can you help me?",
});
// 4. Create a run
const run = await openai.beta.threads.runs.create(thread.id, {
assistant_id: assistant.id,
});
// 5. Poll for completion
let runStatus = await openai.beta.threads.runs.retrieve(thread.id, run.id);
while (runStatus.status !== 'completed') {
await new Promise(resolve => setTimeout(resolve, 1000));
runStatus = await openai.beta.threads.runs.retrieve(thread.id, run.id);
}
// 6. Retrieve messages
const messages = await openai.beta.threads.messages.list(thread.id);
console.log(messages.data[0].content[0].text.value);
Basic Assistant (Fetch - Cloudflare Workers)
// 1. Create assistant
const assistant = await fetch('https://api.openai.com/v1/assistants', {
method: 'POST',
headers: {
'Authorization': `Bearer ${env.OPENAI_API_KEY}`,
'Content-Type': 'application/json',
'OpenAI-Beta': 'assistants=v2',
},
body: JSON.stringify({
name: "Math Tutor",
instructions: "You are a helpful math tutor.",
model: "gpt-4o",
}),
});
const assistantData = await assistant.json();
// 2. Create thread
const thread = await fetch('https://api.openai.com/v1/threads', {
method: 'POST',
headers: {
'Authorization': `Bearer ${env.OPENAI_API_KEY}`,
'Content-Type': 'application/json',
'OpenAI-Beta': 'assistants=v2',
},
});
const threadData = await thread.json();
// 3. Add message and create run
const run = await fetch(`https://api.openai.com/v1/threads/${threadData.id}/runs`, {
method: 'POST',
headers: {
'Authorization': `Bearer ${env.OPENAI_API_KEY}`,
'Content-Type': 'application/json',
'OpenAI-Beta': 'assistants=v2',
},
body: JSON.stringify({
assistant_id: assistantData.id,
additional_messages: [{
role: "user",
content: "What is 3x + 11 = 14?",
}],
}),
});
// Poll for completion...
Core Concepts
The Assistants API uses four main objects:
1. Assistants
Configured AI entities with:
- Instructions (system prompt, max 256k characters)
- Model (gpt-4o, gpt-5, etc.)
- Tools (Code Interpreter, File Search, Functions)
- File attachments
- Metadata
2. Threads
Conversation containers that:
- Store message history
- Persist across runs
- Can have metadata
- Support up to 100,000 messages
3. Messages
Individual messages in a thread:
- User messages (input)
- Assistant messages (output)
- Can include file attachments
- Support text and image content
4. Runs
Execution of an assistant on a thread:
- Asynchronous processing
- Multiple states (queued, in_progress, completed, failed, etc.)
- Can stream results
- Handle tool calls automatically
Assistants
Create an Assistant
const assistant = await openai.beta.assistants.create({
name: "Data Analyst",
instructions: "You are a data analyst. Use code interpreter to analyze data and create visualizations.",
model: "gpt-4o",
tools: [
{ type: "code_interpreter" },
{ type: "file_search" },
],
tool_resources: {
file_search: {
vector_store_ids: ["vs_abc123"],
},
},
metadata: {
department: "analytics",
version: "1.0",
},
});
Parameters:
model(required): Model ID (gpt-4o, gpt-5, gpt-4-turbo)instructions: System prompt (max 256k characters in v2, was 32k in v1)name: Assistant name (max 256 characters)description: Description (max 512 characters)tools: Array of tools (max 128 tools)tool_resources: Resources for tools (vector stores, files)temperature: 0-2 (default 1)top_p: 0-1 (default 1)response_format: "auto", "json_object", or JSON schemametadata: Key-value pairs (max 16 pairs)
Retrieve an Assistant
const assistant = await openai.beta.assistants.retrieve("asst_abc123");
Update an Assistant
const updatedAssistant = await openai.beta.assistants.update("asst_abc123", {
instructions: "Updated instructions",
tools: [{ type: "code_interpreter" }, { type: "file_search" }],
});
Delete an Assistant
await openai.beta.assistants.del("asst_abc123");
List Assistants
const assistants = await openai.beta.assistants.list({
limit: 20,
order: "desc",
});
Threads
Threads store conversation history and persist across runs.
Create a Thread
// Empty thread
const thread = await openai.beta.threads.create();
// Thread with initial messages
const thread = await openai.beta.threads.create({
messages: [
{
role: "user",
content: "Hello! I need help with Python.",
metadata: { source: "web" },
},
],
metadata: {
user_id: "user_123",
session_id: "session_456",
},
});
Retrieve a Thread
const thread = await openai.beta.threads.retrieve("thread_abc123");
Update Thread Metadata
const thread = await openai.beta.threads.update("thread_abc123", {
metadata: {
user_id: "user_123",
last_active: new Date().toISOString(),
},
});
Delete a Thread
await openai.beta.threads.del("thread_abc123");
⚠️ Warning: Deleting a thread also deletes all messages and runs. Cannot be undone.
Messages
Add a Message to a Thread
const message = await openai.beta.threads.messages.create("thread_abc123", {
role: "user",
content: "Can you analyze this data?",
attachments: [
{
file_id: "file_abc123",
tools: [{ type: "code_interpreter" }],
},
],
metadata: {
timestamp: new Date().toISOString(),
},
});
Parameters:
role: "user" only (assistant messages created by runs)content: Text or array of content blocksattachments: Files with associated toolsmetadata: Key-value pairs
Retrieve a Message
const message = await openai.beta.threads.messages.retrieve(
"thread_abc123",
"msg_abc123"
);
List Messages
const messages = await openai.beta.threads.messages.list("thread_abc123", {
limit: 20,
order: "desc", // "asc" or "desc"
});
// Iterate through messages
for (const message of messages.data) {
console.log(`${message.role}: ${message.content[0].text.value}`);
}
Update Message Metadata
const message = await openai.beta.threads.messages.update(
"thread_abc123",
"msg_abc123",
{
metadata: {
edited: "true",
edit_timestamp: new Date().toISOString(),
},
}
);
Delete a Message
await openai.beta.threads.messages.del("thread_abc123", "msg_abc123");
Runs
Runs execute an assistant on a thread.
Create a Run
const run = await openai.beta.threads.runs.create("thread_abc123", {
assistant_id: "asst_abc123",
instructions: "Please address the user as Jane Doe.",
additional_messages: [
{
role: "user",
content: "Can you help me with this?",
},
],
});
Parameters:
assistant_id(required): Assistant to useinstructions: Override assistant instructionsadditional_messages: Add messages before runningtools: Override assistant toolsmetadata: Key-value pairstemperature: Override temperaturetop_p: Override top_pmax_prompt_tokens: Limit input tokensmax_completion_tokens: Limit output tokens
Retrieve a Run
const run = await openai.beta.threads.runs.retrieve(
"thread_abc123",
"run_abc123"
);
console.log(run.status); // queued, in_progress, requires_action, completed, failed, etc.
Run States
| State | Description |
|---|---|
queued |
Run is waiting to start |
in_progress |
Run is executing |
requires_action |
Function calling needs your input |
cancelling |
Cancellation in progress |
cancelled |
Run was cancelled |
failed |
Run failed (check last_error) |
completed |
Run finished successfully |
expired |
Run expired (max 10 minutes) |
Polling Pattern
async function pollRunCompletion(threadId: string, runId: string) {
let run = await openai.beta.threads.runs.retrieve(threadId, runId);
while (['queued', 'in_progress', 'cancelling'].includes(run.status)) {
await new Promise(resolve => setTimeout(resolve, 1000)); // Wait 1 second
run = await openai.beta.threads.runs.retrieve(threadId, runId);
}
if (run.status === 'failed') {
throw new Error(`Run failed: ${run.last_error?.message}`);
}
if (run.status === 'requires_action') {
// Handle function calling (see Function Calling section)
return run;
}
return run; // completed
}
const run = await openai.beta.threads.runs.create(threadId, { assistant_id: assistantId });
const completedRun = await pollRunCompletion(threadId, run.id);
Cancel a Run
const run = await openai.beta.threads.runs.cancel("thread_abc123", "run_abc123");
⚠️ Important: Cancellation is asynchronous. Check status becomes cancelled.
List Runs
const runs = await openai.beta.threads.runs.list("thread_abc123", {
limit: 10,
order: "desc",
});
Streaming Runs
Stream run events in real-time using Server-Sent Events (SSE).
Basic Streaming
const stream = await openai.beta.threads.runs.stream("thread_abc123", {
assistant_id: "asst_abc123",
});
for await (const event of stream) {
if (event.event === 'thread.message.delta') {
const delta = event.data.delta.content?.[0]?.text?.value;
if (delta) {
process.stdout.write(delta);
}
}
}
Stream Event Types
| Event | Description |
|---|---|
thread.run.created |
Run was created |
thread.run.in_progress |
Run started |
thread.run.step.created |
Step created (tool call, message creation) |
thread.run.step.delta |
Step progress update |
thread.message.created |
Message created |
thread.message.delta |
Message content streaming |
thread.message.completed |
Message finished |
thread.run.completed |
Run finished |
thread.run.failed |
Run failed |
thread.run.requires_action |
Function calling needed |
Complete Streaming Example
async function streamAssistantResponse(threadId: string, assistantId: string) {
const stream = await openai.beta.threads.runs.stream(threadId, {
assistant_id: assistantId,
});
for await (const event of stream) {
switch (event.event) {
case 'thread.run.created':
console.log('\\nRun started...');
break;
case 'thread.message.delta':
const delta = event.data.delta.content?.[0];
if (delta?.type === 'text' && delta.text?.value) {
process.stdout.write(delta.text.value);
}
break;
case 'thread.run.step.delta':
const toolCall = event.data.delta.step_details;
if (toolCall?.type === 'tool_calls') {
const codeInterpreter = toolCall.tool_calls?.[0]?.code_interpreter;
if (codeInterpreter?.input) {
console.log('\\nExecuting code:', codeInterpreter.input);
}
}
break;
case 'thread.run.completed':
console.log('\\n\\nRun completed!');
break;
case 'thread.run.failed':
console.error('\\nRun failed:', event.data.last_error);
break;
case 'thread.run.requires_action':
// Handle function calling
console.log('\\nFunction calling required');
break;
}
}
}
Tools
Assistants API supports three types of tools:
Code Interpreter
Executes Python code in a sandboxed environment.
Capabilities:
- Run Python code
- Generate charts/graphs
- Process files (CSV, JSON, text, images, etc.)
- Return file outputs (images, data files)
- Install packages (limited set available)
Example:
const assistant = await openai.beta.assistants.create({
name: "Data Analyst",
instructions: "You are a data analyst. Use Python to analyze data and create visualizations.",
model: "gpt-4o",
tools: [{ type: "code_interpreter" }],
});
// Upload a file
const file = await openai.files.create({
file: fs.createReadStream("sales_data.csv"),
purpose: "assistants",
});
// Create thread with file
const thread = await openai.beta.threads.create({
messages: [{
role: "user",
content: "Analyze this sales data and create a visualization.",
attachments: [{
file_id: file.id,
tools: [{ type: "code_interpreter" }],
}],
}],
});
// Run
const run = await openai.beta.threads.runs.create(thread.id, {
assistant_id: assistant.id,
});
// Poll for completion and retrieve outputs
Output Files:
Code Interpreter can generate files (images, CSVs, etc.). Access them via:
const messages = await openai.beta.threads.messages.list(thread.id);
const message = messages.data[0];
for (const content of message.content) {
if (content.type === 'image_file') {
const fileId = content.image_file.file_id;
const fileContent = await openai.files.content(fileId);
// Save or process file
}
}
File Search
Semantic search over uploaded documents using vector stores.
Key Features:
- Up to 10,000 files per assistant (500x more than v1)
- Automatic chunking and embedding
- Vector + keyword search
- Parallel queries with multi-threading
- Advanced reranking
Pricing:
- $0.10/GB/day for vector storage
- First 1GB free
Example:
// 1. Create vector store
const vectorStore = await openai.beta.vectorStores.create({
name: "Product Documentation",
metadata: { category: "docs" },
});
// 2. Upload files to vector store
const file = await openai.files.create({
file: fs.createReadStream("product_guide.pdf"),
purpose: "assistants",
});
await openai.beta.vectorStores.files.create(vectorStore.id, {
file_id: file.id,
});
// 3. Create assistant with file search
const assistant = await openai.beta.assistants.create({
name: "Product Support",
instructions: "Use file search to answer questions about our products.",
model: "gpt-4o",
tools: [{ type: "file_search" }],
tool_resources: {
file_search: {
vector_store_ids: [vectorStore.id],
},
},
});
// 4. Create thread and run
const thread = await openai.beta.threads.create({
messages: [{
role: "user",
content: "How do I install the product?",
}],
});
const run = await openai.beta.threads.runs.create(thread.id, {
assistant_id: assistant.id,
});
Best Practices:
- Wait for vector store status to be
completedbefore using - Use metadata for filtering (coming soon)
- Chunk large documents appropriately
- Monitor storage costs
Function Calling
Define custom functions for the assistant to call.
Example:
const assistant = await openai.beta.assistants.create({
name: "Weather Assistant",
instructions: "You help users get weather information.",
model: "gpt-4o",
tools: [{
type: "function",
function: {
name: "get_weather",
description: "Get the current weather for a location",
parameters: {
type: "object",
properties: {
location: {
type: "string",
description: "City name, e.g., 'San Francisco'",
},
unit: {
type: "string",
enum: ["celsius", "fahrenheit"],
description: "Temperature unit",
},
},
required: ["location"],
},
},
}],
});
// Create thread and run
const thread = await openai.beta.threads.create({
messages: [{
role: "user",
content: "What's the weather in San Francisco?",
}],
});
let run = await openai.beta.threads.runs.create(thread.id, {
assistant_id: assistant.id,
});
// Poll until requires_action
while (run.status === 'in_progress' || run.status === 'queued') {
await new Promise(resolve => setTimeout(resolve, 1000));
run = await openai.beta.threads.runs.retrieve(thread.id, run.id);
}
if (run.status === 'requires_action') {
const toolCalls = run.required_action.submit_tool_outputs.tool_calls;
const toolOutputs = [];
for (const toolCall of toolCalls) {
if (toolCall.function.name === 'get_weather') {
const args = JSON.parse(toolCall.function.arguments);
// Call your actual weather API
const weather = await getWeatherAPI(args.location, args.unit);
toolOutputs.push({
tool_call_id: toolCall.id,
output: JSON.stringify(weather),
});
}
}
// Submit tool outputs
run = await openai.beta.threads.runs.submitToolOutputs(thread.id, run.id, {
tool_outputs: toolOutputs,
});
// Continue polling...
}
Vector Stores
Vector stores enable efficient semantic search over large document collections.
Create a Vector Store
const vectorStore = await openai.beta.vectorStores.create({
name: "Legal Documents",
metadata: {
department: "legal",
category: "contracts",
},
expires_after: {
anchor: "last_active_at",
days: 7, // Auto-delete 7 days after last use
},
});
Add Files to Vector Store
Single File:
const file = await openai.files.create({
file: fs.createReadStream("contract.pdf"),
purpose: "assistants",
});
await openai.beta.vectorStores.files.create(vectorStore.id, {
file_id: file.id,
});
Batch Upload:
const fileBatch = await openai.beta.vectorStores.fileBatches.create(vectorStore.id, {
file_ids: ["file_abc123", "file_def456", "file_ghi789"],
});
// Poll for batch completion
let batch = await openai.beta.vectorStores.fileBatches.retrieve(vectorStore.id, fileBatch.id);
while (batch.status === 'in_progress') {
await new Promise(resolve => setTimeout(resolve, 1000));
batch = await openai.beta.vectorStores.fileBatches.retrieve(vectorStore.id, fileBatch.id);
}
Check Vector Store Status
const vectorStore = await openai.beta.vectorStores.retrieve("vs_abc123");
console.log(vectorStore.status); // "in_progress", "completed", "failed"
console.log(vectorStore.file_counts); // { in_progress: 0, completed: 50, failed: 0 }
⚠️ Important: Wait for status: "completed" before using with file search.
List Vector Stores
const stores = await openai.beta.vectorStores.list({
limit: 20,
order: "desc",
});
Update Vector Store
const vectorStore = await openai.beta.vectorStores.update("vs_abc123", {
name: "Updated Name",
metadata: { updated: "true" },
});
Delete Vector Store
await openai.beta.vectorStores.del("vs_abc123");
File Uploads
Upload files for use with Code Interpreter or File Search.
Upload a File
import fs from 'fs';
const file = await openai.files.create({
file: fs.createReadStream("document.pdf"),
purpose: "assistants",
});
console.log(file.id); // file_abc123
Supported Formats:
- Code Interpreter: .c, .cpp, .csv, .docx, .html, .java, .json, .md, .pdf, .php, .pptx, .py, .rb, .tex, .txt, .css, .jpeg, .jpg, .js, .gif, .png, .tar, .ts, .xlsx, .xml, .zip
- File Search: .c, .cpp, .docx, .html, .java, .json, .md, .pdf, .php, .pptx, .py, .rb, .tex, .txt, .css, .js, .ts, .go
Size Limits:
- Code Interpreter: 512 MB per file
- File Search: 512 MB per file
- Vector Store: Up to 10,000 files
Retrieve File Info
const file = await openai.files.retrieve("file_abc123");
Download File Content
const content = await openai.files.content("file_abc123");
// Returns binary content
Delete a File
await openai.files.del("file_abc123");
List Files
const files = await openai.files.list({
purpose: "assistants",
});
Thread Lifecycle Management
Proper thread lifecycle management prevents common errors.
Pattern 1: One Thread Per User
async function getOrCreateUserThread(userId: string): Promise<string> {
// Check if thread exists in your database
let threadId = await db.getThreadIdForUser(userId);
if (!threadId) {
// Create new thread
const thread = await openai.beta.threads.create({
metadata: { user_id: userId },
});
threadId = thread.id;
await db.saveThreadIdForUser(userId, threadId);
}
return threadId;
}
Pattern 2: Active Run Check
async function ensureNoActiveRun(threadId: string) {
const runs = await openai.beta.threads.runs.list(threadId, {
limit: 1,
order: "desc",
});
const latestRun = runs.data[0];
if (latestRun && ['queued', 'in_progress', 'cancelling'].includes(latestRun.status)) {
throw new Error('Thread already has an active run. Wait or cancel first.');
}
}
// Before creating new run
await ensureNoActiveRun(threadId);
const run = await openai.beta.threads.runs.create(threadId, { assistant_id });
Pattern 3: Thread Cleanup
async function cleanupOldThreads(maxAgeHours = 24) {
const threads = await openai.beta.threads.list({ limit: 100 });
for (const thread of threads.data) {
const createdAt = new Date(thread.created_at * 1000);
const ageHours = (Date.now() - createdAt.getTime()) / (1000 * 60 * 60);
if (ageHours > maxAgeHours) {
await openai.beta.threads.del(thread.id);
}
}
}
Error Handling
Common Errors and Solutions
1. Thread Already Has Active Run
Error: 400 Can't add messages to thread_xxx while a run run_xxx is active.
Solution:
// Wait for run to complete or cancel it
const run = await openai.beta.threads.runs.retrieve(threadId, runId);
if (['queued', 'in_progress'].includes(run.status)) {
await openai.beta.threads.runs.cancel(threadId, runId);
// Wait for cancellation
while (run.status !== 'cancelled') {
await new Promise(resolve => setTimeout(resolve, 500));
run = await openai.beta.threads.runs.retrieve(threadId, runId);
}
}
2. Run Polling Timeout
Long-running tasks may exceed reasonable polling windows.
Solution:
async function pollWithTimeout(threadId: string, runId: string, maxSeconds = 300) {
const startTime = Date.now();
while (true) {
const run = await openai.beta.threads.runs.retrieve(threadId, runId);
if (!['queued', 'in_progress'].includes(run.status)) {
return run;
}
const elapsed = (Date.now() - startTime) / 1000;
if (elapsed > maxSeconds) {
await openai.beta.threads.runs.cancel(threadId, runId);
throw new Error('Run exceeded timeout');
}
await new Promise(resolve => setTimeout(resolve, 1000));
}
}
3. Vector Store Not Ready
Using vector store before indexing completes.
Solution:
async function waitForVectorStore(vectorStoreId: string) {
let store = await openai.beta.vectorStores.retrieve(vectorStoreId);
while (store.status === 'in_progress') {
await new Promise(resolve => setTimeout(resolve, 2000));
store = await openai.beta.vectorStores.retrieve(vectorStoreId);
}
if (store.status === 'failed') {
throw new Error('Vector store indexing failed');
}
return store;
}
4. File Upload Format Issues
Unsupported file formats cause errors.
Solution:
const SUPPORTED_FORMATS = {
code_interpreter: ['.csv', '.json', '.pdf', '.txt', '.py', '.js', '.xlsx'],
file_search: ['.pdf', '.docx', '.txt', '.md', '.html'],
};
function validateFile(filename: string, tool: string) {
const ext = filename.substring(filename.lastIndexOf('.')).toLowerCase();
if (!SUPPORTED_FORMATS[tool].includes(ext)) {
throw new Error(`Unsupported file format for ${tool}: ${ext}`);
}
}
See references/top-errors.md for complete error catalog.
Production Best Practices
1. Use Assistant IDs (Don't Recreate)
❌ Bad:
// Creates new assistant on every request!
const assistant = await openai.beta.assistants.create({ ... });
✅ Good:
// Create once, store ID, reuse
const ASSISTANT_ID = process.env.ASSISTANT_ID || await createAssistant();
async function createAssistant() {
const assistant = await openai.beta.assistants.create({ ... });
console.log('Save this ID:', assistant.id);
return assistant.id;
}
2. Implement Proper Error Handling
async function createRunWithRetry(threadId: string, assistantId: string, maxRetries = 3) {
for (let i = 0; i < maxRetries; i++) {
try {
return await openai.beta.threads.runs.create(threadId, {
assistant_id: assistantId,
});
} catch (error) {
if (error.status === 429) {
// Rate limit - wait and retry
await new Promise(resolve => setTimeout(resolve, 2000 * (i + 1)));
continue;
}
if (error.message?.includes('active run')) {
// Wait for active run to complete
await new Promise(resolve => setTimeout(resolve, 5000));
continue;
}
throw error; // Other errors
}
}
throw new Error('Max retries exceeded');
}
3. Monitor Costs
// Track usage
const run = await openai.beta.threads.runs.retrieve(threadId, runId);
console.log('Tokens used:', run.usage);
// { prompt_tokens: 150, completion_tokens: 200, total_tokens: 350 }
// Set limits
const run = await openai.beta.threads.runs.create(threadId, {
assistant_id: assistantId,
max_prompt_tokens: 1000,
max_completion_tokens: 500,
});
4. Clean Up Resources
// Delete old threads
async function cleanupUserThread(userId: string) {
const threadId = await db.getThreadIdForUser(userId);
if (threadId) {
await openai.beta.threads.del(threadId);
await db.deleteThreadIdForUser(userId);
}
}
// Delete unused vector stores
async function cleanupVectorStores(keepDays = 30) {
const stores = await openai.beta.vectorStores.list({ limit: 100 });
for (const store of stores.data) {
const ageSeconds = Date.now() / 1000 - store.created_at;
const ageDays = ageSeconds / (60 * 60 * 24);
if (ageDays > keepDays) {
await openai.beta.vectorStores.del(store.id);
}
}
}
5. Use Streaming for Better UX
// Show progress in real-time
async function streamToUser(threadId: string, assistantId: string) {
const stream = await openai.beta.threads.runs.stream(threadId, {
assistant_id: assistantId,
});
for await (const event of stream) {
if (event.event === 'thread.message.delta') {
const delta = event.data.delta.content?.[0]?.text?.value;
if (delta) {
// Send to user immediately
sendToClient(delta);
}
}
}
}
Relationship to Other Skills
vs. openai-api Skill
openai-api (Chat Completions):
- Stateless requests
- Manual history management
- Direct responses
- Use for: Simple text generation, function calling
openai-assistants:
- Stateful conversations (threads)
- Automatic history management
- Built-in tools (Code Interpreter, File Search)
- Use for: Chatbots, data analysis, RAG
vs. openai-responses Skill
openai-responses (Responses API):
- ✅ Recommended for new projects
- Better reasoning preservation
- Modern MCP integration
- Active development
openai-assistants:
- ⚠️ Deprecated in H1 2026
- Use for legacy apps
- Migration path available
Migration: See references/migration-to-responses.md
Migration from v1 to v2
v1 deprecated: December 18, 2024
Key Changes:
- Retrieval → File Search:
retrievaltool replaced withfile_search - Vector Stores: Files now organized in vector stores (10,000 file limit)
- Instructions Limit: Increased from 32k to 256k characters
- File Attachments: Now message-level instead of assistant-level
See references/migration-from-v1.md for complete guide.
Next Steps
Templates:
templates/basic-assistant.ts- Simple math tutortemplates/code-interpreter-assistant.ts- Data analysistemplates/file-search-assistant.ts- RAG with vector storestemplates/function-calling-assistant.ts- Custom toolstemplates/streaming-assistant.ts- Real-time streaming
References:
references/top-errors.md- 12 common errors and solutionsreferences/thread-lifecycle.md- Thread management patternsreferences/vector-stores.md- Vector store deep dive
Related Skills:
openai-responses- Modern replacement (recommended)openai-api- Chat Completions (stateless)
Last Updated: 2025-10-25 Package Version: openai@6.7.0 Status: Production Ready (Deprecated H1 2026)