| name | design-system-cli |
| description | Complete Design System Reverse Engineering (DSRE) + Functional Cloning CLI - Extract visual design (tokens, assets) AND functional behavior (workflows, state machines, business rules) from any web application |
| license | MIT |
| allowed-tools | Read, Write, Edit, Bash, Grep, Glob |
Design System CLI Skill
Complete reverse engineering toolkit for cloning BOTH the visual design AND functional behavior of web applications.
Overview
The design-system-cli provides two complementary capabilities:
Part A: Visual Cloning (Phases 1-8)
- Design Tokens: Colors, typography, spacing, border-radius, shadows, breakpoints
- Visual Assets: Images, videos, SVG icons, background images with metadata
- Asset Prompts: LLM-ready prompts for recreating extracted visual assets
- Component Generation: React components from HTML structure
- Hard Fork & Rebrand: Transform sites into legally clean templates
Part B: Functional Cloning (Phases 9-12)
- Interaction Recording: Capture user sessions with clicks, typing, network calls
- Flow Extraction: Identify screens and user journeys
- Entity Inference: Extract data models from API payloads
- Business Rules: State machines, validation rules, permissions
- App Generation: Generate working Next.js applications from behavioral data
Result: Clone BOTH the look AND behavior of any web application
Core Capabilities
Part A: Visual Cloning (Phases 1-8)
1. Design Token Extraction
Command: ds pipeline --url <url> --framework <framework>
Frameworks Supported:
react-tailwind- Tailwind CSS config for Reactvue-tailwind- Tailwind CSS config for Vuereact-mui- Material-UI theme for Reactangular-material- Angular Material themecss-variables- Plain CSS custom properties
Output Files:
raw-tokens.json- Raw extracted tokensnormalized-tokens.json- Normalized design system<framework>.config.js- Framework-specific config
Example:
ds pipeline --url https://labs.google/aifuturesfund/ --framework react-tailwind
2. Visual Asset Extraction
Command: ds pipeline --url <url> --assets-out <path>
Extracts:
- Images (
<img>tags) with dimensions, alt text, aspect ratio - Videos (
<video>tags) with dimensions, controls, autoplay state - SVG icons and illustrations
- Background images from computed styles
- Dominant colors from each asset
Asset Metadata:
id: Unique identifier (img-1, video-1, svg-1, bg-1)type: image | video | icon | illustration | animationrole: hero | thumbnail | avatar | background | decoration | contentsrc: Asset URLalt: Alternative text (images only)aspectRatio: Width:height ratio (16:9, 1:1, etc.)dominantColors: Array of prominent colorsdimensions: {width, height} in pixels
Output:
{
"page": "https://example.com",
"capturedAt": "2025-11-19T13:18:46.363Z",
"assets": [
{
"id": "img-1",
"type": "image",
"role": "hero",
"src": "https://example.com/hero.webp",
"alt": "Hero image description",
"aspectRatio": "16:9",
"dominantColors": ["#1a73e8", "#ffffff"],
"dimensions": {"width": 1920, "height": 1080}
}
]
}
3. Asset Prompt Generation
Command: ds assets-prompts --assets <assets.json> --out <asset-prompts.json>
Generates LLM-ready prompts for image recreation via fal-ai models:
Output Format:
{
"page": "https://example.com",
"items": [
{
"id": "img-1",
"type": "image",
"target_model": "fal-ai/image",
"prompt": "TODO: describe hero for https://example.com",
"negative_prompt": "text, watermark, logos, UI chrome",
"guidance": {
"aspect_ratio": "16:9",
"color_palette": ["#1a73e8", "#ffffff"],
"style_notes": "role: hero",
"role": "hero"
}
}
]
}
Workflow:
- Extract assets with
ds pipeline --assets-out assets.json - Generate prompts with
ds assets-prompts --assets assets.json --out asset-prompts.json - Review and enhance prompts with asset context
- Use prompts with fal-ai image generation models
- Replace original assets with AI-generated versions
4. Figma Integration
Command: ds figma --tokens <normalized-tokens.json> --out <figma-plugin/>
Generates a ready-to-use Figma plugin with:
- Color styles from token palette
- Text styles from typography tokens
- Interactive UI for import confirmation
- Complete manifest.json configuration
Plugin Usage:
- Generate plugin:
ds figma --tokens normalized-tokens.json - Load plugin in Figma: Plugins → Development → Import from manifest
- Run plugin to import design tokens as Figma styles
Part B: Functional Cloning (Phases 9-12)
Clone the behavior and workflows of applications, not just the visual design.
5. Interaction Recording (Phase 9)
Command: ds trace --url <url> --out trace.json --duration <ms>
Captures:
- User interactions (clicks, typing, navigation, scrolls)
- Network requests and responses with full payloads
- DOM snapshots at each screen transition
- Form submissions and API calls
- Session replay data
Output: trace.json with complete interaction history
Example:
ds trace --url https://gradual.com --out gradual-trace.json --duration 30000
Use Cases:
- Record user workflows for analysis
- Document complex application flows
- Capture API contracts and data models
- Build behavioral test suites
6. Flow Extraction (Phase 10)
Command: ds flows --trace <trace.json> --out-screens <screens.json> --out-flows <flows.json>
Extracts:
- Distinct screens from DOM snapshots
- User journeys and navigation patterns
- Screen transition triggers
- Flow confidence scoring
Outputs:
screens.json- Unique screens with metadataflows.json- User journeys with step-by-step actions
Example:
ds flows --trace gradual-trace.json --out-screens screens.json --out-flows flows.json
Use Cases:
- Map application navigation structure
- Document user journeys
- Identify key user paths
- Analyze flow complexity
7. Entity Inference (Phase 11)
Command: ds entities --trace <trace.json> --out entities.json
Infers:
- Data models from network payloads
- Field types and schemas (string, number, boolean, date-time, array, object)
- Required vs optional fields
- CRUD operations per entity
- Field relationships and metadata
Output: entities.json with complete data model
Example:
ds entities --trace gradual-trace.json --out entities.json
Use Cases:
- Reverse engineer database schemas
- Document API contracts
- Generate TypeScript types
- Build data models for new systems
8. Business Rules Extraction (Phase 12)
Command: ds rules --trace <trace.json> --flows <flows.json> --entities <entities.json> --out rules.json
Extracts:
- State machines from entity status fields
- State transitions from user flows
- Validation rules from field types and API errors
- Permission rules from CRUD operation patterns
- Business rules for workflows and immutability
Output: rules.json with complete rule system
Example:
ds rules \
--trace gradual-trace.json \
--flows flows.json \
--entities entities.json \
--out rules.json
Rule Types:
- State Machines: Lifecycle states and transitions (draft → active → archived)
- Validation Rules: Field constraints (required, email, max:500, min:3)
- Permission Rules: Authorization requirements (create, update, delete, approve)
- Business Rules: Workflow logic and field immutability
9. Functional App Generation (Phase 12)
Command: ds fx-codegen --screens <screens.json> --flows <flows.json> --entities <entities.json> --rules <rules.json> --out <dir>
Generates:
- Complete Next.js 14 application with App Router
- Typed API clients for each entity
- List and detail pages for all entities
- TypeScript types from entity schemas
- React components with validation
- README with functionality spec
Output: Working Next.js application
Example:
ds fx-codegen \
--screens screens.json \
--flows flows.json \
--entities entities.json \
--rules rules.json \
--out apps/gradual-clone
Generated Structure:
apps/gradual-clone/
├── app/
│ ├── layout.tsx # App shell with navigation
│ ├── [entity]s/
│ │ ├── page.tsx # List page
│ │ └── [id]/page.tsx # Detail page
├── lib/
│ ├── types.ts # TypeScript types from entities
│ └── api/
│ └── [entity]s.ts # CRUD API clients
├── package.json # Next.js 14 dependencies
└── README.md # Functionality spec
Complete Workflows
Workflow 1: Complete Functional Clone (Phases 9-12)
Goal: Clone an entire SaaS application (like Gradual, Linear, or Notion)
# Step 1: Record user interactions (30 seconds)
ds trace --url https://gradual.com --out gradual-trace.json --duration 30000
# Step 2: Extract screens and user flows
ds flows --trace gradual-trace.json --out-screens gradual-screens.json --out-flows gradual-flows.json
# Step 3: Infer data models from API calls
ds entities --trace gradual-trace.json --out gradual-entities.json
# Step 4: Extract business rules and state machines
ds rules \
--trace gradual-trace.json \
--flows gradual-flows.json \
--entities gradual-entities.json \
--out gradual-rules.json
# Step 5: Generate working Next.js application
ds fx-codegen \
--screens gradual-screens.json \
--flows gradual-flows.json \
--entities gradual-entities.json \
--rules gradual-rules.json \
--out apps/gradual-clone
# Step 6: Run the cloned application
cd apps/gradual-clone
npm install
npm run dev # http://localhost:3000
Result: Complete working application with:
- All screens and navigation
- Full data models and TypeScript types
- State machines and lifecycle management
- Validation rules and permissions
- CRUD operations and API clients
Workflow 2: Combined Visual + Functional Clone
Goal: Clone BOTH the look AND behavior of an application
# Part A: Visual Cloning
ds pipeline --url https://example.com --framework react-tailwind --assets-out assets.json
ds assets-prompts --assets assets.json --out asset-prompts.json
# Part B: Functional Cloning
ds trace --url https://example.com --out trace.json --duration 30000
ds flows --trace trace.json --out-screens screens.json --out-flows flows.json
ds entities --trace trace.json --out entities.json
ds rules --trace trace.json --flows flows.json --entities entities.json --out rules.json
ds fx-codegen --screens screens.json --flows flows.json --entities entities.json --rules rules.json --out apps/full-clone
# Part C: Merge Results
# Copy visual assets into functional app
cp -r design-system/* apps/full-clone/
# Use generated Tailwind config
cp tailwind.config.js apps/full-clone/
# Run complete clone
cd apps/full-clone
npm install
npm run dev
Result: Pixel-perfect visual clone with complete functional behavior
Use Cases
Visual Cloning Use Cases
Full Design System Extraction
# Extract everything from a website
ds pipeline --url https://example.com --framework react-tailwind --assets-out assets.json
# Generate asset recreation prompts
ds assets-prompts --assets assets.json --out asset-prompts.json
# Generate Figma plugin
ds figma --tokens normalized-tokens.json --out figma-plugin/
Functional Cloning Use Cases
Clone SaaS Application Workflows
# Record and clone key user journeys
ds trace --url https://linear.app --out linear-trace.json
ds flows --trace linear-trace.json --out-screens screens.json --out-flows flows.json
ds fx-codegen --screens screens.json --flows flows.json --entities entities.json --rules rules.json --out apps/linear-clone
Use Cases:
- Recreate project management workflows (Linear, Asana, Jira)
- Clone CRM functionality (Salesforce, HubSpot)
- Reverse engineer SaaS features for competitive analysis
- Build similar apps with custom branding
Document Legacy Applications
# Record enterprise application behavior
ds trace --url https://sap-system.company.com --out sap-trace.json
ds flows --trace sap-trace.json --out-screens sap-screens.json --out-flows sap-flows.json
ds entities --trace sap-trace.json --out sap-entities.json
Use Cases:
- Document undocumented legacy systems
- Extract business rules from old applications
- Modernize legacy workflows
- Create training materials and documentation
Extract API Contracts
# Capture all API calls and payloads
ds trace --url https://api-driven-app.com --out api-trace.json
ds entities --trace api-trace.json --out api-entities.json
Use Cases:
- Reverse engineer API specifications
- Generate TypeScript types from live APIs
- Document third-party integrations
- Build API client libraries
Asset Recreation Workflow
# 1. Extract visual assets with metadata
ds pipeline --url https://example.com --assets-out assets.json
# 2. Generate LLM-ready prompts
ds assets-prompts --assets assets.json --out asset-prompts.json
# 3. Review asset-prompts.json and enhance TODO prompts with descriptions
# Example: Change "TODO: describe hero for https://example.com"
# To: "Modern abstract geometric pattern in blue and white, minimalist design, hero banner"
# 4. Use enhanced prompts with fal-ai for image generation
# 5. Replace original assets with AI-generated versions in your codebase
Token-Only Extraction
# Extract design tokens without assets
ds extract --url https://example.com --out raw-tokens.json
ds normalize --raw raw-tokens.json --out normalized-tokens.json
ds codegen --normalized normalized-tokens.json --framework react-tailwind
Integration with SuperClaude
Auto-Activation Keywords
Visual Cloning:
- design system, extract tokens, recreate page
- Tailwind config, MUI theme, component library
- design tokens, Figma, design analysis
- visual assets, asset recreation, image generation
- fal-ai, asset prompts, regenerate images
Functional Cloning:
- clone application, reverse engineer, extract workflows
- trace interactions, record behavior, user flows
- state machine, business rules, validation rules
- data models, API contracts, TypeScript types
- functional clone, behavior extraction, workflow analysis
File Pattern Detection
tailwind.config.*,theme.*,tokens.**.design.jsonassets.json,asset-prompts.jsontrace.json,flows.json,entities.json,rules.jsonscreens.json
Typical Operations
Visual Operations:
extract- Extract raw design tokens from websitenormalize- Normalize tokens to standard formatgenerate- Generate framework-specific configsanalyze- Analyze design system consistencyrecreate- Recreate page with extracted design systemregenerate_assets- Regenerate visual assets with AIcreate_prompts- Create LLM-ready asset prompts
Functional Operations:
trace- Record user interactions and network callsextract_flows- Extract screens and user journeysinfer_entities- Infer data models from API callsextract_rules- Extract business rules and state machinesgenerate_app- Generate functional Next.js applicationclone_behavior- Clone application workflowsdocument_system- Document legacy application behavior
Command Integration
Visual Cloning:
/build+ design-system-cli → Extract and generate configs/analyze+ design-system-cli → Analyze design consistency/improve+ design-system-cli → Enhance design system/design+ design-system-cli → Design system workflows
Functional Cloning:
/analyze+ design-system-cli → Analyze application workflows/document+ design-system-cli → Document application behavior/build+ design-system-cli → Generate functional clone/troubleshoot+ design-system-cli → Debug workflow extraction
Asset Context Schema
Complete schema documentation: docs/asset_context_schema.md
Core Types:
Asset: Individual visual asset with metadataAssetContext: Complete collection of assets from a pageAssetPromptEntry: LLM-ready prompt for asset recreationAssetPromptsFile: Collection of prompts for all assets
Asset Roles (auto-detected):
hero: Large prominent images in header/hero sectionsthumbnail: Small preview images in grids/listsavatar: Profile pictures and user avatarsbackground: Background images and patternsdecoration: Icons, illustrations, SVG graphicscontent: Main content images and media
Architecture
Monorepo Structure:
packages/
# Visual Cloning (Phases 1-8)
├── core/ # Shared TypeScript interfaces
├── extractor/ # Playwright-based token and asset extraction
├── normalizer/ # Token normalization and standardization
├── codegen/ # Framework config generation + asset prompt generation
├── figma-bridge/ # Figma plugin generation
# Functional Cloning (Phases 9-12)
├── functional-trace/ # User interaction and network recording
├── functional-flows/ # Screen and flow extraction
├── functional-entities/ # Data model inference from APIs
├── functional-rules/ # Business rules and state machine extraction
└── functional-codegen/ # Next.js application scaffold generation
Complete Processing Pipeline:
VISUAL CLONING:
Website → Playwright → Raw Extraction → Normalization → Code Generation
↓
Assets.json → Asset Prompts → fal-ai → Regenerated Assets
FUNCTIONAL CLONING:
Website → User Interaction → Trace Recording → Flow Extraction
↓
Entity Inference → Rules Extraction
↓
Next.js App Generation
COMBINED:
Visual Design System + Functional Application = Complete Clone
Examples
Example 1: Extract from Google AI Futures Fund
ds pipeline --url https://labs.google/aifuturesfund/ --framework react-tailwind --assets-out assets.json
Output:
tailwind.config.jswith extracted color palette, typography, spacingassets.jsonwith 92 visual assets (images, videos, SVGs)
Example 2: Generate Asset Recreation Prompts
ds assets-prompts --assets assets.json --out asset-prompts.json
Output:
asset-prompts.jsonwith 92 LLM-ready prompts for fal-ai
Example 3: Full Workflow
# Extract design system and assets
ds pipeline --url https://carbondesi
gnsystem.com --framework react-tailwind --assets-out carbon-assets.json
# Generate asset prompts
ds assets-prompts --assets carbon-assets.json --out carbon-prompts.json
# Generate Figma plugin
ds figma --tokens normalized-tokens.json --out figma-plugin/
# Result:
# - tailwind.config.js (design tokens)
# - carbon-assets.json (92 assets with metadata)
# - carbon-prompts.json (LLM-ready recreation prompts)
# - figma-plugin/ (ready-to-use Figma plugin)
Known Limitations
Asset Extraction:
- SVG className handling (fixed with getClassName() helper)
- Background images only from computed styles
- No lazy-loaded image detection
Prompt Generation:
- Generic TODO placeholders require manual enhancement
- No automatic prompt quality assessment
- Single target model (fal-ai/image)
Token Extraction:
- JavaScript-rendered content requires headless browser
- Dynamic CSS-in-JS may be missed
- Some design tokens may be inferred incorrectly
Testing
E2E Test:
# Full pipeline test with real website
node bin/ds pipeline --url https://labs.google/aifuturesfund/ --framework react-tailwind --assets-out test-assets.json
# Verify outputs
ls -lh tailwind.config.js test-assets.json
# Generate and verify prompts
node bin/ds assets-prompts --assets test-assets.json --out test-prompts.json
ls -lh test-prompts.json
Documentation
README.md- Project overview and getting starteddocs/asset_context_schema.md- Complete asset schema documentationSKILL.md- This file (SuperClaude integration guide)
Contributing
When enhancing this skill:
- Update SKILL.md with new capabilities
- Add examples for new workflows
- Update ORCHESTRATOR.md keywords if needed
- Maintain backward compatibility with existing outputs
Resources
- GitHub: (Repository URL)
- Documentation:
docs/ - Examples: See Examples section above
- fal-ai Models: https://fal.ai/models (for asset recreation)