Claude Code Plugins

Community-maintained marketplace

Feedback

Use when performing regression analysis with confidence intervals, solving ODEs, fitting models to experimental data, or caching expensive scientific computations - provides convenient wrappers around scipy that automatically calculate confidence intervals and prediction bounds for linear, nonlinear, and polynomial regression

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pycse
description Use when performing regression analysis with confidence intervals, solving ODEs, fitting models to experimental data, or caching expensive scientific computations - provides convenient wrappers around scipy that automatically calculate confidence intervals and prediction bounds for linear, nonlinear, and polynomial regression

pycse - Python Computations in Science and Engineering

Overview

pycse extends numpy/scipy with convenience functions that automatically return confidence intervals for regression, making statistical analysis faster and less error-prone. Instead of manually extracting covariance matrices and calculating confidence intervals, pycse returns them directly.

Core value: Turn 100+ lines of scipy boilerplate into 10 lines of clear, reusable code.

When to Use

Use pycse when:

  • Fitting models to experimental data and need parameter confidence intervals
  • Performing regression analysis (linear, nonlinear, polynomial)
  • Comparing models with statistical criteria (BIC, R²)
  • Generating predictions with error bounds
  • Caching expensive computational results
  • Reading data from Google Sheets into pandas
  • Solving ODEs (wraps scipy with convenient interface)

Don't use when:

  • scipy alone meets your needs (both are valid)
  • You need custom optimization beyond least squares
  • Working with models pycse doesn't support

Quick Reference

Task pycse Function Returns
Linear regression regress(A, y, alpha=0.05) p, pint, se
Nonlinear regression nlinfit(model, x, y, p0, alpha=0.05) p, pint, se
Polynomial fit polyfit(x, y, deg, alpha=0.05) p, pint, se
Prediction intervals predict(X, y, pars, XX, alpha=0.05) prediction, intervals
Nonlinear predict nlpredict(X, y, model, loss, popt, xnew) prediction, bounds
Model comparison bic(x, y, model, popt) bic_value
Linear BIC lbic(X, y, popt) bic_value
R-squared Rsquared(y, Y) r2_value
ODE solver ivp(f, tspan, y0, **kwargs) solution

All regression functions return: (p, pint, se) where:

  • p = fitted parameters
  • pint = confidence intervals for parameters
  • se = standard errors

Common Patterns

Nonlinear Regression with Confidence Intervals

import numpy as np
import pycse

# Data
time = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
concentration = np.array([100, 82, 67, 55, 45, 37, 30, 25, 20, 17, 14])

# Model: C(t) = C0 * exp(-k * t)
def model(t, C0, k):
    return C0 * np.exp(-k * t)

# Fit with 95% confidence intervals
p, pint, se = pycse.nlinfit(model, time, concentration, [100, 0.1])

print(f"C0 = {p[0]:.2f} ± {pint[0,1] - p[0]:.2f}")
print(f"k = {p[1]:.4f} ± {pint[1,1] - p[1]:.4f}")

# That's it! No manual covariance extraction or t-distribution calculations.

Compare to scipy: Would require extracting covariance, calculating standard errors, looking up t-distribution, computing intervals manually (~50+ lines).

Linear Regression

import numpy as np
import pycse

# Data matrix A and observations y
A = np.array([[1, 2], [1, 3], [1, 4], [1, 5]])  # [intercept, x]
y = np.array([3, 5, 7, 9])

# Fit: y = p[0] + p[1]*x
p, pint, se = pycse.regress(A, y)

print(f"Intercept: {p[0]:.2f}, 95% CI: [{pint[0,0]:.2f}, {pint[0,1]:.2f}]")
print(f"Slope: {p[1]:.2f}, 95% CI: [{pint[1,0]:.2f}, {pint[1,1]:.2f}]")

Polynomial Fitting

import numpy as np
import pycse

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1.5, 3.8, 8.2, 14.9, 23.5, 34.8, 48.2, 64.1])

# Fit quadratic: y = p[0] + p[1]*x + p[2]*x^2
p, pint, se = pycse.polyfit(x, y, deg=2)

print(f"Coefficients: {p}")
print(f"95% CI: {pint}")

Prediction with Error Bounds

import numpy as np
import pycse

# After fitting (see above examples)
x_new = np.array([11, 12, 13])

# Linear prediction
X_new = np.column_stack([np.ones(len(x_new)), x_new])
y_pred, intervals = pycse.predict(A, y, p, X_new)

print(f"Predictions: {y_pred}")
print(f"95% intervals: {intervals}")

# Nonlinear prediction
y_pred_nl, bounds = pycse.nlpredict(time, concentration, model,
                                     lambda p: np.sum((concentration - model(time, *p))**2),
                                     p, x_new)

Model Comparison

import pycse

# Fit two models
p1, _, _ = pycse.polyfit(x, y, deg=1)  # Linear
p2, _, _ = pycse.polyfit(x, y, deg=2)  # Quadratic

# Compare with BIC (lower is better)
bic1 = pycse.lbic(X1, y, p1)
bic2 = pycse.lbic(X2, y, p2)

print(f"Linear BIC: {bic1:.2f}")
print(f"Quadratic BIC: {bic2:.2f}")
print(f"Better model: {'Quadratic' if bic2 < bic1 else 'Linear'}")

# R-squared for goodness of fit
r2 = pycse.Rsquared(y, model(x, *p))
print(f"R² = {r2:.4f}")

Unique Features

Persistent Hash-based Caching

Cache expensive computations to disk - especially valuable for molecular dynamics, DFT calculations, or long-running simulations.

from pycse.hashcache import HashCache, JsonCache, SqlCache

# Decorator approach
@HashCache()
def expensive_simulation(param1, param2):
    # Long-running computation
    result = complex_calculation(param1, param2)
    return result

# First call: runs computation and caches
result1 = expensive_simulation(1.0, 2.0)

# Second call with same args: retrieves from cache (instant)
result2 = expensive_simulation(1.0, 2.0)

# SqlCache supports searching cached results
@SqlCache(name='my_sim_cache')
def simulation(x, y):
    return complex_calc(x, y)

# Search cache
cache = SqlCache(name='my_sim_cache')
results = cache.search({'x': 1.0})  # Find all cached results where x=1.0

Cache types:

  • HashCache: Pickle-based (fastest)
  • JsonCache: JSON format (human-readable, maggma-compatible)
  • SqlCache: SQLite with search() capability

Google Sheets Integration

from pycse.utils import read_gsheet

# Read Google Sheet directly into pandas DataFrame
url = "https://docs.google.com/spreadsheets/d/YOUR_SHEET_ID/edit"
df = pycse.utils.read_gsheet(url)

# Now use with pycse functions
x = df['time'].values
y = df['concentration'].values
p, pint, se = pycse.nlinfit(model, x, y, p0)

Fuzzy Comparisons

For floating-point comparisons with tolerance:

from pycse.utils import feq, fgt, flt, fge, fle

# Check if value is "close enough" to target
if pycse.utils.feq(calculated_pi, np.pi, epsilon=1e-6):
    print("Converged!")

# Fuzzy comparisons
if pycse.utils.fgt(value, threshold, epsilon=1e-8):
    print("Value exceeds threshold (within tolerance)")

Installation

pip install pycse

Requirements: Python 3.6+, numpy, scipy

Common Mistakes

❌ Forgetting initial guess for nonlinear fit:

# Will fail - nlinfit needs initial parameter guess
p, pint, se = pycse.nlinfit(model, x, y)  # Missing p0!

✅ Correct:

p, pint, se = pycse.nlinfit(model, x, y, p0=[100, 0.1])

❌ Wrong shape for regress():

# regress expects A to be 2D with shape (n_observations, n_parameters)
A = x  # 1D array - wrong!
p, pint, se = pycse.regress(A, y)

✅ Correct:

# Add column for intercept
A = np.column_stack([np.ones(len(x)), x])  # Shape: (n, 2)
p, pint, se = pycse.regress(A, y)

When pycse vs scipy

Use pycse when:

  • You need confidence intervals (pycse returns them automatically)
  • Doing many regressions in a workflow (consistent interface)
  • Want prediction intervals with error bounds
  • Need caching for expensive computations
  • Integrating with Google Sheets

Use scipy when:

  • You need custom optimization methods
  • Doing complex constrained optimization
  • Need features pycse doesn't expose
  • Building low-level computational tools

Both are valid! pycse wraps scipy for convenience, not replacement.

Additional Resources