| name | audience-synthesis |
| description | Synthesize audience insights from multiple data sources into unified personas and segments. Use when relevant to the task. |
audience-synthesis
Synthesize audience insights from multiple data sources into unified personas and segments.
Triggers
- "analyze audience"
- "build personas"
- "segment audience"
- "who is our target"
- "audience insights"
- "customer profile"
Purpose
This skill creates comprehensive audience understanding by:
- Aggregating data from multiple sources
- Building data-driven personas
- Creating behavioral segments
- Identifying growth opportunities
- Recommending targeting strategies
Behavior
When triggered, this skill:
Gathers audience data:
- Analytics demographics
- CRM customer data
- Social audience insights
- Survey/research data
- Purchase behavior
Identifies patterns:
- Demographic clusters
- Behavioral segments
- Value tiers
- Engagement patterns
Builds personas:
- Synthesize data into archetypes
- Document motivations and pain points
- Map customer journey
- Identify content preferences
Creates segments:
- Behavioral segmentation
- Value-based segmentation
- Engagement segmentation
- Lifecycle segmentation
Generates recommendations:
- Targeting strategies
- Content recommendations
- Channel preferences
- Growth opportunities
Data Sources
First-Party Data
first_party:
analytics:
source: Google Analytics, Mixpanel
data:
- demographics
- interests
- behavior
- conversion_paths
crm:
source: Salesforce, HubSpot
data:
- customer_attributes
- purchase_history
- lifetime_value
- engagement_history
email:
source: Mailchimp, Klaviyo
data:
- email_engagement
- preferences
- segments
product:
source: Product analytics
data:
- feature_usage
- retention
- activation
Second-Party Data
second_party:
social:
source: Instagram, LinkedIn, Twitter
data:
- follower_demographics
- engagement_patterns
- content_preferences
advertising:
source: Meta, Google, LinkedIn
data:
- audience_overlap
- conversion_audiences
- lookalike_performance
partnerships:
source: Partner data shares
data:
- co-marketing audiences
- industry benchmarks
Third-Party Data
third_party:
research:
source: Industry reports, surveys
data:
- market_size
- industry_trends
- competitor_audiences
enrichment:
source: Clearbit, ZoomInfo
data:
- firmographics
- technographics
- intent_signals
Persona Template
# Persona: [Name]
## Overview
| Attribute | Value |
|-----------|-------|
| Name | Tech-Savvy Tara |
| Role | Marketing Manager |
| Age Range | 28-35 |
| Experience | 5-8 years |
| Company Size | 50-200 employees |
| Industry | SaaS, Tech |
## Demographics
### Professional
- **Title**: Marketing Manager, Growth Lead
- **Seniority**: Mid-level
- **Department**: Marketing, Growth
- **Reports to**: CMO, VP Marketing
- **Team size**: 2-5 direct reports
### Personal
- **Education**: Bachelor's, Marketing/Business
- **Location**: Urban, tech hubs
- **Income**: $75-100K
- **Tech adoption**: Early adopter
## Psychographics
### Goals
1. Prove marketing ROI to leadership
2. Automate repetitive tasks
3. Stay ahead of industry trends
4. Advance career to director level
### Challenges
1. Limited budget vs. big ambitions
2. Lack of technical resources
3. Proving attribution across channels
4. Keeping up with platform changes
### Motivations
- **Achiever**: Wants measurable results
- **Learner**: Values staying current
- **Collaborator**: Seeks team success
- **Efficiency-seeker**: Hates wasted time
### Fears
- Falling behind competitors
- Wasting budget on ineffective campaigns
- Not having data to support decisions
- Missing key industry shifts
## Behavior
### Content Consumption
- **Formats**: Podcasts, newsletters, Twitter
- **Topics**: Marketing trends, case studies, how-tos
- **Sources**: Marketing Brew, HubSpot Blog, industry Twitter
- **Time**: Morning commute, lunch breaks
### Purchase Behavior
- **Research**: Extensive (4-6 week cycle)
- **Influencers**: Peers, G2 reviews, case studies
- **Decision factors**: ROI proof, ease of use, integrations
- **Barriers**: Price, implementation time, approval process
### Channel Preferences
| Channel | Preference | Best For |
|---------|------------|----------|
| Email | High | Nurture, updates |
| LinkedIn | High | Professional content |
| Webinars | Medium | Deep dives |
| Twitter | Medium | News, trends |
| Phone | Low | Only when ready |
## Customer Journey
### Awareness
- **Trigger**: Frustration with current tools
- **Actions**: Google search, ask peers, browse LinkedIn
- **Content**: Blog posts, social proof, thought leadership
### Consideration
- **Trigger**: Identified potential solutions
- **Actions**: Demo requests, free trials, case study reviews
- **Content**: Comparison guides, ROI calculators, webinars
### Decision
- **Trigger**: Validated fit, secured budget
- **Actions**: Negotiate, involve stakeholders, trial
- **Content**: Pricing details, implementation guides, success stories
### Retention
- **Trigger**: Ongoing value demonstration
- **Actions**: Feature adoption, support engagement
- **Content**: Best practices, new features, community
## Messaging
### Value Props That Resonate
1. "Save 10 hours per week on reporting"
2. "Prove ROI to your leadership in one click"
3. "Join 5,000+ marketers who increased conversions 40%"
### Objection Handlers
| Objection | Response |
|-----------|----------|
| "Too expensive" | ROI payback in 3 months |
| "No time to implement" | Live in 2 hours, not weeks |
| "Current tool works" | Missing these 3 key features |
### Tone & Voice
- Professional but approachable
- Data-driven with clear examples
- Empathetic to time constraints
- Action-oriented
## Targeting
### Ideal Channels
1. LinkedIn (professional context)
2. Email (direct, personalized)
3. Podcast ads (captive attention)
4. Industry events (high-intent)
### Lookalike Indicators
- HubSpot/Mailchimp users
- Marketing conference attendees
- Marketing podcast subscribers
- G2 reviewer profiles
### Exclusions
- Enterprise (100K+ employees)
- Agencies (different needs)
- Non-marketing roles
## Data Sources
- Analytics: 45% of traffic matches profile
- CRM: 2,340 customers in segment
- Survey: 2023 customer research (n=500)
- Social: LinkedIn follower analysis
Segmentation Framework
segmentation_types:
behavioral:
name: Behavioral Segments
dimensions:
- engagement_level: [highly_active, active, passive, dormant]
- feature_usage: [power_user, standard, limited]
- purchase_frequency: [frequent, occasional, one_time]
use_cases:
- Lifecycle marketing
- Retention campaigns
- Upsell targeting
value_based:
name: Value Segments
dimensions:
- ltv_tier: [platinum, gold, silver, bronze]
- revenue_potential: [high, medium, low]
- expansion_likelihood: [likely, possible, unlikely]
use_cases:
- Resource allocation
- Account prioritization
- Pricing strategies
demographic:
name: Demographic Segments
dimensions:
- company_size: [enterprise, mid_market, smb, startup]
- industry: [tech, finance, healthcare, retail, etc]
- geography: [region, country, city_tier]
use_cases:
- Content personalization
- Sales territory planning
- Localization
psychographic:
name: Psychographic Segments
dimensions:
- buying_style: [innovator, pragmatist, conservative]
- decision_process: [solo, committee, consensus]
- risk_tolerance: [risk_taker, calculated, risk_averse]
use_cases:
- Message positioning
- Sales approach
- Content tone
Audience Synthesis Report
# Audience Synthesis Report
**Date**: 2025-12-08
**Scope**: Full audience analysis
**Data Sources**: 6 platforms, 2 research studies
## Executive Summary
### Audience Composition
| Segment | % of Total | Revenue % | Growth YoY |
|---------|------------|-----------|------------|
| Power Users | 15% | 45% | +22% |
| Regular Users | 35% | 35% | +8% |
| Occasional Users | 30% | 15% | -5% |
| At-Risk | 20% | 5% | -15% |
### Key Insights
1. **High-value concentration**: 15% of users drive 45% of revenue
2. **Growth opportunity**: Mid-market segment growing fastest (+18%)
3. **Retention risk**: 20% of audience showing disengagement signals
4. **Channel shift**: Mobile usage up 35%, desktop flat
## Persona Summary
### Primary Personas
| Persona | % of Audience | LTV | Acquisition Cost |
|---------|---------------|-----|------------------|
| Tech-Savvy Tara | 35% | $2,400 | $180 |
| Enterprise Ed | 20% | $12,000 | $1,200 |
| Startup Sam | 25% | $600 | $45 |
| Agency Amy | 20% | $1,800 | $220 |
### Persona Details
[Link to full persona documents]
## Segment Analysis
### By Engagement Level
Highly Active ████████████████ 25% Active ████████████████████████ 35% Passive ████████████████ 25% Dormant ██████████ 15%
### By Company Size
Enterprise ████████ 12% Mid-Market ████████████████████ 28% SMB ████████████████████████████ 42% Startup ████████████████ 18%
### By Industry
| Industry | Users | Growth | Opportunity |
|----------|-------|--------|-------------|
| Tech/SaaS | 35% | +15% | Maintain |
| Finance | 18% | +25% | Expand |
| Healthcare | 12% | +8% | Monitor |
| Retail | 15% | +5% | Optimize |
| Other | 20% | +3% | Evaluate |
## Growth Opportunities
### 1. Finance Vertical Expansion
- **Opportunity**: Growing 25% YoY, only 18% of current base
- **Recommendation**: Develop finance-specific content and case studies
- **Estimated impact**: +$500K ARR
### 2. Power User Amplification
- **Opportunity**: Power users have 4x referral rate
- **Recommendation**: Launch referral program targeting power users
- **Estimated impact**: +200 customers/quarter
### 3. At-Risk Win-Back
- **Opportunity**: 20% of users showing disengagement
- **Recommendation**: Automated re-engagement campaign
- **Estimated impact**: Save $150K ARR churn
## Targeting Recommendations
### Lookalike Audiences
| Source Audience | Platform | Expected ROAS |
|-----------------|----------|---------------|
| Power Users | Meta | 3.5x |
| Recent Converters | Google | 2.8x |
| High LTV | LinkedIn | 2.2x |
### Exclusion Recommendations
- Current customers (all platforms)
- Competitors' employees
- Students/job seekers
- Non-target geographies
### Channel Allocation
| Persona | Primary Channel | Secondary | Budget % |
|---------|-----------------|-----------|----------|
| Tech-Savvy Tara | LinkedIn | Email | 40% |
| Enterprise Ed | Events | LinkedIn | 25% |
| Startup Sam | Content/SEO | Twitter | 20% |
| Agency Amy | Partner | Email | 15% |
## Action Items
1. [ ] Build finance vertical content series
2. [ ] Launch power user referral program
3. [ ] Deploy at-risk re-engagement automation
4. [ ] Update lookalike audiences with Q4 data
5. [ ] Create persona-specific landing pages
## Data Quality Notes
- CRM data 94% complete
- Analytics sampling at 95% confidence
- Survey margin of error: ±4%
- Social data limited to organic followers
Usage Examples
Full Audience Analysis
User: "Analyze our audience"
Skill executes:
1. Pull data from all sources
2. Identify patterns and segments
3. Build/update personas
4. Generate recommendations
Output:
"Audience Analysis Complete
Total Addressable: 45,000 users
Active: 32,000 (71%)
Key Segments:
1. Power Users (15%): High LTV, expansion ready
2. Growing Mid-Market (+18% YoY)
3. At-Risk (20%): Needs re-engagement
Top Personas:
- Tech-Savvy Tara (35%): Your core user
- Enterprise Ed (20%): Highest LTV ($12K)
- Startup Sam (25%): Highest volume, lowest LTV
Growth Opportunities:
1. Finance vertical: +25% growth, underserved
2. Power user referrals: 4x rate potential
3. At-risk save: $150K ARR protection
Report: .aiwg/marketing/audience/synthesis-2025-12.md"
Build Specific Persona
User: "Build persona for enterprise buyers"
Skill creates:
- Aggregate enterprise customer data
- Identify common patterns
- Build comprehensive persona
Output:
"Enterprise Persona: 'Enterprise Ed'
Profile:
- Role: VP/Director level
- Company: 500-5000 employees
- Budget: $50K+ annual
- Decision: 3-6 month cycle
Key Insights:
- Values: Security, support, scalability
- Concerns: Implementation risk, vendor stability
- Content: Case studies, ROI calculators, demos
- Channel: Events, direct outreach, LinkedIn
Persona saved: .aiwg/marketing/personas/enterprise-ed.md"
Integration
This skill uses:
data-pipeline: Source marketing dataproject-awareness: Context for analysisartifact-metadata: Track audience artifacts
Agent Orchestration
agents:
analysis:
agent: marketing-analyst
focus: Data analysis and pattern identification
research:
agent: market-researcher
focus: External research and enrichment
strategy:
agent: positioning-specialist
focus: Targeting and positioning recommendations
Configuration
Persona Defaults
persona_config:
max_personas: 5
refresh_frequency: quarterly
data_requirements:
- min_sample_size: 100
- required_sources: 3+
- recency: <90_days
Segmentation Rules
segmentation_rules:
min_segment_size: 5%
max_segments: 10
required_dimensions:
- engagement
- value
- lifecycle
Output Locations
- Personas:
.aiwg/marketing/personas/ - Segments:
.aiwg/marketing/segments/ - Synthesis reports:
.aiwg/marketing/audience/ - Data sources:
.aiwg/marketing/data/audience/
References
- Persona templates: templates/marketing/persona-template.md
- Segmentation guide: docs/segmentation-guide.md
- Data sources: .aiwg/marketing/config/data-sources.yaml