| name | pdf-extractor |
| description | Extract text, tables, and images from PDF files. Use when converting PDF documentation, manuals, or reports to searchable text. |
PDF Extractor Skill
Purpose
Single responsibility: Extract structured content (text, tables, images) from PDF files into organized, searchable formats. (BP-4)
Grounding Checkpoint (Archetype 1 Mitigation)
Before executing, VERIFY:
- PDF file exists and is readable (
file <path>confirms PDF format) - PDF is not corrupted (
pdfinfo <path>returns metadata) - Password known if encrypted
- Output directory is writable
- Required tools available (pdfplumber, pytesseract for OCR)
DO NOT proceed without verification. Inspect PDF metadata first.
Uncertainty Escalation (Archetype 2 Mitigation)
ASK USER instead of guessing when:
- PDF appears to be scanned (needs OCR) but OCR tools unavailable
- Multiple table formats detected - unclear which parser to use
- Password-protected but no password provided
- Image extraction quality unclear (resolution, format preferences)
- Language detection needed for OCR
NEVER assume PDF structure without inspection.
Context Scope (Archetype 3 Mitigation)
| Context Type | Included | Excluded |
|---|---|---|
| RELEVANT | Target PDF, extraction options, output path | Other PDF files |
| PERIPHERAL | Similar PDF structure examples | Unrelated documents |
| DISTRACTOR | Previous extraction attempts | Other file formats |
Workflow Steps
Step 1: Inspect PDF (Grounding)
# Check file type
file document.pdf
# Get PDF metadata
pdfinfo document.pdf
# Check page count
pdfinfo document.pdf | grep Pages
# Check if encrypted
pdfinfo document.pdf | grep Encrypted
Step 2: Determine Extraction Strategy
| PDF Type | Detection | Strategy |
|---|---|---|
| Text-based | pdftotext produces readable text |
Direct extraction |
| Scanned/Image | pdftotext produces empty/garbled |
OCR required |
| Mixed | Some pages text, some images | Hybrid approach |
| Tables | Visual grid patterns | Table extraction mode |
| Forms | Interactive fields | Form field extraction |
Step 3: Execute Extraction
Option A: With skill-seekers (if installed)
# Basic extraction
skill-seekers pdf --pdf document.pdf --name myskill
# With table extraction
skill-seekers pdf --pdf document.pdf --name myskill --extract-tables
# With OCR for scanned docs
skill-seekers pdf --pdf document.pdf --name myskill --ocr
# With parallel processing (large PDFs)
skill-seekers pdf --pdf document.pdf --name myskill --parallel --workers 8
# Password-protected
skill-seekers pdf --pdf document.pdf --name myskill --password "secret"
Option B: Manual extraction guidance
# Basic text extraction
pdftotext -layout document.pdf output.txt
# Extract with page markers
pdftotext -layout -eol unix document.pdf output.txt
# Extract images
pdfimages -all document.pdf images/
# OCR scanned PDF (requires tesseract)
pdftoppm document.pdf page -png
tesseract page-*.png output -l eng
Step 4: Validate Output
# Check extraction quality
head -100 output/<skill-name>/references/content.md
# Verify table extraction
grep -A 10 "| " output/<skill-name>/references/*.md
# Check image extraction
ls -la output/<skill-name>/assets/images/
Recovery Protocol (Archetype 4 Mitigation)
On error:
- PAUSE - Stop extraction, preserve partial output
- DIAGNOSE - Check error type:
File not found→ Verify pathPassword required→ Ask user for passwordCorrupt PDF→ Try repair withqpdf --checkOCR failed→ Check tesseract installation, language packsMemory error→ Process in chunks, reduce workers
- ADAPT - Switch strategy based on diagnosis
- RETRY - Resume with adapted approach (max 3 attempts)
- ESCALATE - Ask user for guidance
Checkpoint Support
State saved to: .aiwg/working/checkpoints/pdf-extractor/
For large PDFs, extraction saves progress per chunk:
checkpoints/pdf-extractor/
├── document_metadata.json
├── pages_1-50.json
├── pages_51-100.json
└── current_position.json
Output Structure
output/<skill-name>/
├── SKILL.md # Skill description with PDF summary
├── references/
│ ├── index.md # Table of contents
│ ├── chapter_1.md # Content by section
│ ├── chapter_2.md
│ └── tables.md # Extracted tables
└── assets/
└── images/ # Extracted images (if enabled)
├── page_1_fig_1.png
└── page_5_chart_1.png
Configuration Options
{
"name": "mymanual",
"description": "Product manual documentation",
"pdf_path": "docs/manual.pdf",
"extract_options": {
"chunk_size": 10,
"min_quality": 6.0,
"extract_images": true,
"min_image_size": 150,
"ocr_enabled": false,
"ocr_language": "eng",
"table_extraction": true
},
"categories": {
"getting_started": ["introduction", "setup", "installation"],
"usage": ["using", "operation", "guide"],
"reference": ["appendix", "specifications", "api"]
}
}
Extraction Quality Metrics
| Metric | Good | Acceptable | Poor |
|---|---|---|---|
| Text extraction rate | >95% | 80-95% | <80% |
| Table accuracy | >90% | 70-90% | <70% |
| Image quality | >300 DPI | 150-300 DPI | <150 DPI |
| OCR confidence | >90% | 70-90% | <70% |
Troubleshooting
| Issue | Diagnosis | Solution |
|---|---|---|
| Garbled text | Scanned PDF | Enable OCR mode |
| Missing tables | Complex layout | Use --extract-tables with pdfplumber |
| Poor OCR | Low resolution | Increase DPI, check language pack |
| Memory error | Large PDF | Use chunked extraction, reduce workers |
| Corrupt PDF | File damaged | Try qpdf --check or mutool clean |
Dependencies
Required:
- Python 3.10+
- pdfplumber or pypdf
Optional (for advanced features):
- pytesseract + tesseract-ocr (for OCR)
- Pillow (for image processing)
- camelot-py (for complex tables)
References
- Skill Seekers PDF Support: https://github.com/jmagly/Skill_Seekers/blob/main/docs/PDF_MCP_TOOL.md
- REF-001: Production-Grade Agentic Workflows (BP-1, BP-4)
- REF-002: LLM Failure Modes (Archetype 1-4 mitigations)