| name | flask-smorest-api |
| description | Set up Flask REST API with flask-smorest, OpenAPI docs, blueprint architecture, and dataclass models. Use when creating a new Flask API server, building REST endpoints, or setting up a production API. |
Flask REST API with flask-smorest Pattern
This skill helps you set up a Flask REST API following a standardized pattern with flask-smorest for OpenAPI documentation, blueprint architecture, and dataclass models for request/response handling.
When to Use This Skill
Use this skill when:
- Starting a new Flask REST API project
- You want automatic OpenAPI/Swagger documentation
- You need a clean, modular blueprint architecture
- You want type-safe data models using dataclasses with to_dict/from_dict patterns
- You're building a production-ready API server
What This Skill Creates
- Main application file - Flask app initialization with flask-smorest
- Blueprint structure - Modular endpoint organization
- Data models - Dataclasses with to_dict/from_dict methods and validation
- Singleton manager pattern - Centralized service/database initialization
- CORS support - Cross-origin request handling
- Requirements file - All necessary dependencies
Step 1: Gather Project Information
IMPORTANT: Before creating files, ask the user these questions:
"What is your project name?" (e.g., "materia-server", "trading-api", "myapp")
- Use this to derive:
- Main module:
{project_name}.py(e.g.,materia_server.py) - Port number (suggest based on project, default: 5000)
- Main module:
- Use this to derive:
"What features/endpoints do you need?" (e.g., "users", "tokens", "orders")
- Each feature will become a blueprint
"Do you need database integration?" (yes/no)
- If yes, reference postgres-setup skill for database layer
"What port should the server run on?" (default: 5000)
Step 2: Create Directory Structure
Create these directories if they don't exist:
{project_root}/
├── blueprints/ # Blueprint modules (one per feature)
│ ├── __init__.py
│ └── {feature}.py
├── models/ # Dataclass models with to_dict/from_dict
│ ├── __init__.py
│ └── {feature}.py
└── {project_name}.py # Main application file
Step 3: Create Main Application File
Create {project_name}.py using this template:
import os
import logging
from flask import Flask
from flask_cors import CORS
from flask_smorest import Api
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_app():
app = Flask(__name__)
app.config['API_TITLE'] = '{Project Name} API'
app.config['API_VERSION'] = 'v1'
app.config['OPENAPI_VERSION'] = '3.0.2'
app.config['OPENAPI_URL_PREFIX'] = '/'
app.config['OPENAPI_SWAGGER_UI_PATH'] = '/swagger'
app.config['OPENAPI_SWAGGER_UI_URL'] = 'https://cdn.jsdelivr.net/npm/swagger-ui-dist/'
CORS(app)
api = Api(app)
from blueprints.{feature} import blp as {feature}_blp
api.register_blueprint({feature}_blp)
logger.info("Flask app initialized")
return app
if __name__ == '__main__':
port = int(os.environ.get('PORT', {port_number}))
app = create_app()
logger.info(f"Swagger UI: http://localhost:{port}/swagger")
app.run(host='0.0.0.0', port=port)
CRITICAL: Replace:
{Project Name}→ Human-readable project name (e.g., "Materia Server"){project_name}→ Snake case project name (e.g., "materia_server"){port_number}→ Actual port number (e.g., 5151){feature}→ Feature name from user's response
Step 4: Create Data Models
For each feature, create a models file with dataclasses that include to_dict and from_dict methods:
File: models/{feature}.py
from dataclasses import dataclass
from typing import Optional
@dataclass
class {Feature}:
"""
{Feature} data model.
Includes validation in from_dict and serialization via to_dict.
"""
id: str
name: str
created_at: int
updated_at: Optional[int] = None
def to_dict(self) -> dict:
"""Serialize to dictionary for JSON response."""
return {
"id": self.id,
"name": self.name,
"created_at": self.created_at,
"updated_at": self.updated_at
}
@classmethod
def from_dict(cls, data: dict) -> "{Feature}":
"""
Create instance from dictionary with validation.
Args:
data: Dictionary with {feature} data
Returns:
{Feature} instance
Raises:
ValueError: If required fields are missing or invalid
"""
if "id" not in data:
raise ValueError("id is required")
if "name" not in data:
raise ValueError("name is required")
if "created_at" not in data:
raise ValueError("created_at is required")
return cls(
id=str(data["id"]),
name=str(data["name"]),
created_at=int(data["created_at"]),
updated_at=int(data["updated_at"]) if data.get("updated_at") else None
)
CRITICAL: Replace:
{Feature}→ PascalCase feature name (e.g., "TradableToken"){feature}→ Snake case feature name (e.g., "tradable_token")
Step 5: Create Blueprint Files
For each feature/endpoint, create a blueprint file:
File: blueprints/{feature}.py
import logging
from flask import request, jsonify
from flask.views import MethodView
from flask_smorest import Blueprint, abort
from models.{feature} import {Feature}
logger = logging.getLogger(__name__)
blp = Blueprint('{feature}', __name__, url_prefix='/api', description='{Feature} API')
@blp.route('/{feature}')
class {Feature}ListResource(MethodView):
def get(self):
"""Get list of {feature}s."""
try:
limit = request.args.get('limit', 100, type=int)
offset = request.args.get('offset', 0, type=int)
# TODO: Implement logic to fetch {feature}s
items = []
return jsonify({
"data": [item.to_dict() for item in items],
"limit": limit,
"offset": offset
})
except ValueError as e:
logger.warning(f"Bad request: {e}")
abort(400, message=str(e))
except Exception as e:
logger.exception(f"Error fetching {feature}s: {e}")
abort(500, message="Internal server error")
def post(self):
"""Create a new {feature}."""
try:
data = request.get_json()
if not data:
abort(400, message="Request body is required")
item = {Feature}.from_dict(data)
# TODO: Implement logic to save {feature}
return jsonify(item.to_dict()), 201
except ValueError as e:
logger.warning(f"Validation error: {e}")
abort(400, message=str(e))
except Exception as e:
logger.exception(f"Error creating {feature}: {e}")
abort(500, message="Internal server error")
@blp.route('/{feature}/<string:item_id>')
class {Feature}Resource(MethodView):
def get(self, item_id: str):
"""Get a single {feature} by ID."""
try:
# TODO: Implement logic to fetch {feature} by ID
item = None
if not item:
abort(404, message=f"{Feature} not found: {item_id}")
return jsonify(item.to_dict())
except Exception as e:
logger.exception(f"Error fetching {feature}: {e}")
abort(500, message="Internal server error")
def put(self, item_id: str):
"""Update a {feature}."""
try:
data = request.get_json()
if not data:
abort(400, message="Request body is required")
# TODO: Implement logic to update {feature}
return jsonify({"message": "Updated"})
except ValueError as e:
logger.warning(f"Validation error: {e}")
abort(400, message=str(e))
except Exception as e:
logger.exception(f"Error updating {feature}: {e}")
abort(500, message="Internal server error")
def delete(self, item_id: str):
"""Delete a {feature}."""
try:
# TODO: Implement logic to delete {feature}
return jsonify({"message": "Deleted"})
except Exception as e:
logger.exception(f"Error deleting {feature}: {e}")
abort(500, message="Internal server error")
CRITICAL: Replace:
{Feature}→ PascalCase feature name (e.g., "TradableToken"){feature}→ Snake case feature name (e.g., "tradable_token")
Step 6: Create Common Singleton Manager (If Needed)
If the project needs shared services (database, API clients, etc.), create a singleton manager:
File: common.py
"""
Singleton manager for shared service instances.
Provides centralized initialization of database connections, API clients,
and other shared resources.
"""
import os
import logging
logger = logging.getLogger(__name__)
class ServiceManager:
"""
Singleton manager for shared service instances.
Ensures only one instance of each service is created and reused
across all blueprints.
"""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ServiceManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
# Initialize services
self._db = None
self._initialized = True
logger.info("ServiceManager initialized")
def get_database(self):
"""
Get database connection instance.
Returns:
Database connection instance (lazy initialization)
"""
if self._db is None:
# Import database driver
from src.{project_name}.database import Database
# Get connection parameters from environment
db_host = os.environ.get('{PROJECT_NAME}_DB_HOST', 'localhost')
db_name = os.environ.get('{PROJECT_NAME}_DB_NAME', '{project_name}')
db_user = os.environ.get('{PROJECT_NAME}_DB_USER', '{project_name}')
db_passwd = os.environ.get('{PROJECT_NAME}_DB_PASSWORD')
if not db_passwd:
raise ValueError("{PROJECT_NAME}_DB_PASSWORD environment variable required")
self._db = Database(db_host, db_name, db_user, db_passwd)
logger.info("Database connection initialized")
return self._db
# Global singleton instance
service_manager = ServiceManager()
CRITICAL: Replace:
{PROJECT_NAME}→ Uppercase project name (e.g., "MATERIA_SERVER"){project_name}→ Snake case project name (e.g., "materia_server")
Step 7: Create Environment Configuration
File: example.env
Create or update example.env with required environment variables:
# Server Configuration
PORT={port_number}
DEBUG=False
# Database Configuration (if applicable)
{PROJECT_NAME}_DB_HOST=localhost
{PROJECT_NAME}_DB_NAME={project_name}
{PROJECT_NAME}_DB_USER={project_name}
{PROJECT_NAME}_DB_PASSWORD=your_password_here
# Optional: CORS Configuration
ALLOWED_ORIGINS=http://localhost:3000,http://localhost:8080
CRITICAL: Replace:
{port_number}→ Actual port number (e.g., 5151){PROJECT_NAME}→ Uppercase project name (e.g., "MATERIA_SERVER"){project_name}→ Snake case project name (e.g., "materia_server")
File: .env (gitignored)
Instruct the user to copy example.env to .env and fill in actual values:
# Copy example.env to .env and update with actual values
cp example.env .env
Update .gitignore
Add .env to .gitignore if not already present:
# Environment variables
.env
Step 8: Create Requirements File
Create requirements.txt with dependencies (no version pinning):
# Flask and API framework
Flask
flask-smorest
flask-cors
# Environment variable management
python-dotenv
# Production server (optional but recommended)
gunicorn
# Database (if needed)
psycopg2-binary
Step 9: Create Blueprints init.py
Create blueprints/__init__.py:
"""
Blueprint modules for {Project Name} API.
Each blueprint represents a distinct feature or resource endpoint.
"""
Step 10: Document Usage
Create or update README.md with:
Setup
# Copy example environment file
cp example.env .env
# Edit .env and fill in actual values
# Then install dependencies
pip install -r requirements.txt
Running the Server
# Development mode
python {project_name}.py
# Production mode with Gunicorn
gunicorn -w 4 -b 0.0.0.0:{port_number} '{project_name}:create_app()'
Environment Variables
Copy example.env to .env and configure:
Server Configuration:
PORT- Server port (default: {port_number})DEBUG- Enable debug mode (default: False)
Database (if applicable):
{PROJECT_NAME}_DB_HOST- Database host (default: localhost){PROJECT_NAME}_DB_NAME- Database name (default: {project_name}){PROJECT_NAME}_DB_USER- Database user (default: {project_name}){PROJECT_NAME}_DB_PASSWORD- Database password (REQUIRED)
API Documentation
Once running, access Swagger UI at:
http://localhost:{port_number}/swagger
Design Principles
This pattern follows these principles:
Architecture:
- Blueprint Organization - Modular endpoint organization, one blueprint per feature
- MethodView Classes - Class-based views for HTTP methods (get, post, put, delete)
- Separation of Concerns - Routes, models, and business logic separated
- Singleton Manager - Centralized service initialization prevents duplicate connections
- Application Factory -
create_app()pattern for testing and flexibility
Data Models:
- Dataclasses - Type-safe data models using Python dataclasses
- to_dict/from_dict - Consistent serialization and deserialization pattern
- Validation in from_dict - Input validation with clear error messages
- Self-Contained - Each model handles its own validation and serialization
API Design:
- OpenAPI/Swagger - Automatic documentation via flask-smorest
- Error Handling - Consistent error responses with proper HTTP status codes
- CORS Support - Cross-origin requests for frontend consumption
- JSON Responses - All endpoints return JSON via jsonify()
Best Practices:
- Environment-Based Config - All secrets via environment variables
- Logging - Structured logging throughout
- Idempotent Operations - Safe to call multiple times
- Production Ready - Gunicorn support out of the box
- Testing Friendly - Application factory enables easy testing
Integration with Other Skills
Database Integration
If database is needed, use postgres-setup skill first:
User: "Set up postgres database for my project"
Then reference the database in your blueprints via the singleton manager:
from common import service_manager
db = service_manager.get_database()
Package Structure
If publishing as a package, use python-pypi-setup skill:
User: "Set up Python package for PyPI"
Example Usage in Claude Code
User: "Set up Flask API server for my project"
Claude: "What is your project name?"
User: "crypto-tracker"
Claude: "What features/endpoints do you need?"
User: "prices, tokens, portfolio"
Claude: "Do you need database integration?"
User: "yes"
Claude: "What port should the server run on?"
User: "8080"
Claude:
- Creates
crypto_tracker.pywith Flask app - Creates
models/directory with dataclass models:prices.py,tokens.py,portfolio.py
- Creates
blueprints/directory with endpoint handlers:prices.py,tokens.py,portfolio.py
- Creates
common.pywith ServiceManager singleton - Creates
requirements.txtwith dependencies - Documents environment variables needed
- Provides startup instructions
Optional: Docker Support
If user requests Docker, reference the flask-docker-deployment skill for production-ready containerization with automated versioning and health checks.